236
Views
0
CrossRef citations to date
0
Altmetric
Material Engineering

Water-soaking effect and influence of nanoclay on mechanical properties of bamboo/glass fiber reinforced epoxy hybrid composites

, ORCID Icon & ORCID Icon
Article: 2338160 | Received 15 Feb 2024, Accepted 28 Mar 2024, Published online: 11 Apr 2024

References

  • Abd El-Baky, M., Attia, M., Abdelhaleem, M., & Hassan, M. (2020). Mechanical characterization of hybrid composites based on flax, basalt and glass fibers. Journal of Composite Materials, 54(27), 4185–4205. https://doi.org/10.1177/0021998320928509
  • Agopian, J. C., Téraube, O., Hajjar-Garreau, S., Charlet, K., & Dubois, M. (2023). Study of carbon-flax hybrid composites modified by fibre fluorination. Journal of Fluorine Chemistry, 272, 110213. https://doi.org/10.1016/j.jfluchem.2023.110213
  • Ahmad, S. M., M C, G., Shettar, M., & Sharma, S. (2023). Experimental investigation of mechanical properties and morphology of bamboo-glass fiber- nanoclay reinforced epoxy hybrid composites properties and morphology of bamboo-glass. Cogent Engineering, 10(2), 2279209. https://doi.org/10.1080/23311916.2023.2279209
  • Al Imran, K., Hossain, M. K., Hosur, M., & Jeelani, S. (2021). Assessment of moisture barrier, mechanical, and thermal property of base/nanophased carbon-epoxy composites in seawater. Journal of Composite Materials, 55(5), 703–715. https://doi.org/10.1177/0021998320953480
  • Alamri, H., & Low, I. M. (2012). Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Materials and Design, 42, 214–222. https://doi.org/10.1016/j.matdes.2012.05.060
  • Al-Jumaili, S. K., Alkaron, W. A., & Atshan, M. Y. (2023). Mechanical, thermal, and morphological properties of low-density polyethylene nanocomposites reinforced with montmorillonite: Fabrication and characterizations. Cogent Engineering, 10(1), 2204550. https://doi.org/10.1080/23311916.2023.2204550
  • Arya, S., Kumar, R., & Chauhan, S. (2024). Preparation and characterization of woven jute fabric layered composite by using bamboo fiber reinforced polymers as resin matrix. Construction and Building Materials, 411, 134343. https://doi.org/10.1016/j.conbuildmat.2023.134343
  • Avci, A., Eker, A. A., Bodur, M. S., & Candan, Z. (2023). Water absorption characterization of boron compounds-reinforced PLA/flax fiber sustainable composite. International Journal of Biological Macromolecules, 233, 123546. https://doi.org/10.1016/j.ijbiomac.2023.123546
  • Batu, T., & Lemu, H. G. (2020). Investigation of mechanical properties of false banana/glass fiber reinforced hybrid composite materials. Results in Materials, 8, 100152. https://doi.org/10.1016/j.rinma.2020.100152
  • Bin Rashid, A., Haque, M., Islam, S. M. M., & Uddin Labib, K. M. R. (2024). Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications. Heliyon, 10(2), e24692. https://doi.org/10.1016/j.heliyon.2024.e24692
  • Bulut, M., Alsaadi, M., & Erkliğ, A. (2020). The effects of nanosilica and nanoclay particles inclusions on mode II delamination, thermal and water absorption of intraply woven carbon/aramid hybrid composites. International Polymer Processing, 35(4), 367–375. https://doi.org/10.3139/217.3940
  • Chee, S. S., Jawaid, M., Alothman, O. Y., & Fouad, H. (2021). Effects of nanoclay on mechanical and dynamic mechanical properties of bamboo/Kenaf reinforced epoxy hybrid composites. Polymers, 13(3), 395. https://doi.org/10.3390/polym13030395
  • Chee, S. S., Jawaid, M., Sultan, M. T. H., Alothman, O. Y., & Abdullah, L. C. May (2020). Effects of nanoclay on physical and dimensional stability of Bamboo/Kenaf/nanoclay reinforced epoxy hybrid nanocomposites. Journal of Materials Research and Technology, 9(3), 5871–5880. https://doi.org/10.1016/j.jmrt.2020.03.114
  • Feng Ng, L. (2022). Introduction to epoxy/synthetic/natural fibre composites. Handbook of epoxy/fiber composites (pp. 869–901). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-3603-6_33
  • Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829–892. https://doi.org/10.1007/s10853-019-03990-y
  • Guo, F., Aryana, S., Han, Y., & Jiao, Y. (2018). A review of the synthesis and applications of polymer–nanoclay composites. Applied Sciences, 8(9), 1696. https://doi.org/10.3390/app8091696
  • Hasan, K. M. F., Hasan, K. M. N. A., Ahmed, T., György, S. T., Pervez, M. N., Bejó, L., Sándor, B., & Alpár, T. (2023). Sustainable bamboo fiber reinforced polymeric composites for structural applications: A mini review of recent advances and future prospects. Case Studies in Chemical and Environmental Engineering, 8, 100362. https://doi.org/10.1016/j.cscee.2023.100362
  • He, F., Biolzi, L., & Carvelli, V. (2022). Effect of fiber hybridization on mechanical properties of concrete. Materials and Structures, 55(7), 195. https://doi.org/10.1617/s11527-022-02020-9
  • Herlina Sari, N., Wardana, I. N. G., Surya Irawan, Y., & Siswanto, E. (2017). The effect of sodium hydroxide on chemical and mechanical properties of corn husk fiber. Oriental Journal of Chemistry, 33(6), 3037–3042. https://doi.org/10.13005/ojc/330642
  • Jawaid, M., Chee, S. S., Asim, M., Saba, N., & Kalia, S. (2022). Sustainable kenaf/bamboo fibers/clay hybrid nanocomposites: Properties, environmental aspects and applications. Journal of Cleaner Production, 330, 129938. https://doi.org/10.1016/j.jclepro.2021.129938
  • Kaima, J., Preechawuttipong, I., Peyroux, R., Jongchansitto, P., & Kaima, T. (2023). Experimental investigation of alkaline treatment processes (NaOH, KOH and ash) on tensile strength of the bamboo fiber bundle. Results in Engineering, 18, 101186. https://doi.org/10.1016/j.rineng.2023.101186
  • Kenned, J. J., Sankaranarayanasamy, K., & Kumar, C. S. (2021). Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: A review. Polymers and Polymer Composites. 29(7), 1011–1038. https://doi.org/10.1177/0967391120942419
  • Kini, A. U., Shettar, M., Gowrishankar, M. C., & Sharma, S. (2023). A technical review on epoxy-nanoclay nanocomposites: Mechanical, hygrothermal and wear properties. Cogent Engineering, 10(2), 2257949. https://doi.org/10.1080/23311916.2023.2257949
  • Kini, A., Shettar, M., Kowshik, S., R, N., & Chate, G. (2022). Water soaking and re-drying effect on mechanical and wear properties of nanoclay-polyester nanocomposites. Materials Research, 25, e20210478. https://doi.org/10.1590/1980-5373-mr-2021-0478
  • Kini, U. A., Shettar, M., Sharma, S., Hiremath, P., & Gowrishankar, M. C. (2018). Investigation on effect of cold soaking on the properties of nanoclay-GFRP composite. Materials Research Express, 6(1), 015206. https://doi.org/10.1088/2053-1591/aae967
  • Kiran Zhade, S., Kumar Chokka, S., Suresh Babu, V., & Sai Srinadh, K. V. (2022). A review on mechanical properties of epoxy-glass composites reinforced with nanoclay. Epoxy-based composites. IntechOpen. https://doi.org/10.5772/intechopen.102159
  • Korkees, F. (2023). Moisture absorption behavior and diffusion characteristics of continuous carbon fiber reinforced epoxy composites: A review. Polymer-Plastics Technology and Materials, 62(14), 1789–1822. https://doi.org/10.1080/25740881.2023.2234461
  • Kowshik, S., M C, G., Shettar, M., Bhat, R., & B M, G. (2021). Durability prediction analysis on mechanical properties of GFRP upon immersion in water at ambient temperature. Cogent Engineering, 8(1), 1956869. https://doi.org/10.1080/23311916.2021.1956869
  • Kowshik, S., Shettar, M., Rangaswamy, N., Chate, G., & Somdee, P. (2022). Effect of nanoclay on mechanical, flammability, and water absorption properties of glass fiber-epoxy composite. Cogent Engineering, 9(1), 2069070. https://doi.org/10.1080/23311916.2022.2069070
  • Li, C., Feng, C., Zhang, L., Shan, J., & Shi, M. (2024). A review of the effect of hydrothermal aging on the mechanical properties of < scp > 2D</scp > fiber‐reinforced resin matrix composites. Polymers for Advanced Technologies, 35(1), 1–28. https://doi.org/10.1002/pat.6239
  • Liu, Z., Wang, H., Yang, L., & Du, J. (2022). Research on mechanical properties and durability of flax/glass fiber bio-hybrid FRP composites laminates. Composite Structures, 290, 115566. https://doi.org/10.1016/j.compstruct.2022.115566
  • Luo, Q., Li, Y., Zhang, Z., Peng, X., & Geng, G. (2022). Influence of substrate moisture on the interfacial bonding between calcium silicate hydrate and epoxy. Construction and Building Materials, 320, 126252. https://doi.org/10.1016/j.conbuildmat.2021.126252
  • Manaia, J. P., & Manaia, A. (2021). Interface modification, water absorption behaviour and mechanical properties of injection moulded short hemp fiber-reinforced thermoplastic composites. Polymers, 13(10), 1638. https://doi.org/10.3390/polym13101638
  • Merah, N., & Mohamed, O. (2019). Nanoclay and water uptake effects on mechanical properties of unsaturated polyester. Journal of Nanomaterials, 2019, 1–11. https://doi.org/10.1155/2019/8130419
  • Merah, N., Ashraf, F., & Shaukat, M. M. (2022). Mechanical and moisture barrier properties of epoxy–nanoclay and hybrid epoxy–nanoclay glass fibre composites: A review. Polymers, 14(8), 1620. https://doi.org/10.3390/polym14081620
  • Mohammed, M., Rahman, R., Mohammed, A. M., Adam, T., Betar, B. O., Osman, A. F., & Dahham, O. S. (2022). Surface treatment to improve water repellence and compatibility of natural fiber with polymer matrix: Recent advancement. Polymer Testing, 115, 107707. https://doi.org/10.1016/j.polymertesting.2022.107707
  • Muñoz, E., & García-Manrique, J. A. (2015). Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. International Journal of Polymeric Science, 2015, 1–10. https://doi.org/10.1155/2015/390275
  • Musthaq, M. A., Dhakal, H. N., Zhang, Z., Barouni, A., & Zahari, R. (2023). The effect of various environmental conditions on the impact damage behaviour of natural-fibre-reinforced composites (NFRCs)—A critical review. Polymers, 15(5), 1229. https://doi.org/10.3390/polym15051229
  • Olhan, S., Antil, B., Khatkar, V., & Behera, B. K. (2023). Mechanical, thermal, and viscoelastic behavior of sisal fibre-based structural composites for automotive applications: Experimental and FEM analysis. Composite Structures, 322, 117427. https://doi.org/10.1016/j.compstruct.2023.117427
  • Periyasamy, D., Manoharan, B., Arockiasamy, F. S., Aravind, D., Senthilkumar, K., Rajini, N., Muhammed, F. F., & Al-Lohedan, H. A. (2023). Exploring the recycling potential of HDPE films reinforced with flax fiber for making sustainable decorative tiles. Journal of Materials Research and Technology, 25, 2049–2060. https://doi.org/10.1016/j.jmrt.2023.06.067
  • Qiu, C., Jiang, L., Gao, Y., & Sheng, L. (2023). Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review. Materials and Design, 230, 111952. https://doi.org/10.1016/j.matdes.2023.111952
  • Rajak, D. K., Wagh, P. H., & Linul, E. (2021). Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review. Polymers, 13(21), 3721. https://doi.org/10.3390/polym13213721
  • Rajeshkumar, G. (2020). An experimental study on the interdependence of mercerization, moisture absorption and mechanical properties of sustainable Phoenix. Journal of Industrial Textiles, 49(9), 1233–1251. https://doi.org/10.1177/1528083718811085
  • Ramachandran, A., Mavinkere Rangappa, S., Kushvaha, V., Khan, A., Seingchin, S., & Dhakal, H. N. (2022). Modification of fibers and matrices in natural fiber reinforced polymer composites: A comprehensive review. Macromolecular Rapid Communications, 43(17), 2100862. https://doi.org/10.1002/marc.202100862
  • Ramesh, M., Rajeshkumar, L. N., Srinivasan, N., Kumar, D. V., & Balaji, D. (2022). Influence of filler material on properties of fiber-reinforced polymer composites: A review. e-Polymers, 22(1), 898–916. https://doi.org/10.1515/epoly-2022-0080
  • Saada, K., Zaoui, M., Amroune, S., Benyettou, R., Hechaichi, A., Jawaid, M., Hashem, M., & Uddin, I. (2024). Exploring tensile properties of bio composites reinforced date palm fibers using experimental and Modelling Approaches. Materials Chemistry and Physics, 314, 128810. https://doi.org/10.1016/j.matchemphys.2023.128810
  • Shettar, M., Doshi, M., & Rawat, A. K. (2021). Study on mechanical properties and water uptake of polyester-nanoclay nanocomposite and analysis of wear property using RSM. Journal of Materials Research and Technology, 14, 1618–1629. https://doi.org/10.1016/j.jmrt.2021.07.034
  • Shettar, M., Shettigar, P., Manjunath, M., & Rao, U. S. (2020). Study on effect of water soaking conditions on properties and morphology of glass fiber–cement–polyester composites. Journal of Materials Research and Technology, 9(4), 8697–8704. https://doi.org/10.1016/j.jmrt.2020.05.117
  • Silva, G., Kim, S., Aguilar, R., & Nakamatsu, J. (2020). Natural fibers as reinforcement additives for geopolymers – A review of potential eco-friendly applications to the construction industry. Sustainable Materials and Technologies, 23, e00132. https://doi.org/10.1016/j.susmat.2019.e00132
  • Singh, T. (2021). Optimum design based on fabricated natural fiber reinforced automotive brake friction composites using hybrid CRITIC-MEW approach. Journal of Materials Research and Technology, 14, 81–92. https://doi.org/10.1016/j.jmrt.2021.06.051
  • Song, H., Liu, T., & Gauvin, F. (2024). Enhancing mechanical performance of green fiber cement composites: Role of eco-friendly alkyl ketene dimer on surfaces of hemp fibers. Journal of Materials Research and Technology, 28, 3121–3132. https://doi.org/10.1016/j.jmrt.2023.12.255
  • Suresh, S., Shettar, M., Gowrishankar, M. C., & Sharma, S. (2023). Durability analysis on properties of water soaked PNNCs and CS-ANN model for wear property analysis of PNNCs. Cogent Engineering, 10(1), 2213977. https://doi.org/10.1080/23311916.2023.2213977
  • Verma, S. K., Gupta, A., Patel, V. K., Gangil, B., & Ranikoti, L. (2019). The potential of natural fibers for automotive sector (pp. 31–49). Automotive Tribology. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0434-1_3
  • Vigneshwaran, S., Sundarakannan, R., John, K. M., Joel Johnson, R. D., Prasath, K. A., Ajith, S., Arumugaprabu, V., & Uthayakumar, M. (2020). Recent advancement in the natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 277, 124109. https://doi.org/10.1016/j.jclepro.2020.124109
  • Wang, D., Bai, T., Cheng, W., Xu, C., Wang, G., Cheng, H., & Han, G. (2019). Surface modification of bamboo fibers to enhance the interfacial adhesion of epoxy resin-based composites prepared by resin transfer molding. Polymers, 11(12), 2107. https://doi.org/10.3390/polym11122107
  • Wang, Q., Chen, T., Wang, X., Zheng, Y., Zheng, J., Song, G., & Liu, S. (2023). Recent progress on moisture absorption aging of plant fiber reinforced polymer composites. Polymers, 15(20), 4121. https://doi.org/10.3390/polym15204121
  • Zhang, K., Liang, W., Wang, F., & Wang, Z. (2021). Effect of water absorption on the mechanical properties of bamboo/glass-reinforced polybenzoxazine hybrid composite. Polymers and Polymer Composites. 29(1), 3–14. https://doi.org/10.1177/0967391120903664