182
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Study of fatigue crack growth of al 6061-T6 welds obtained by gas metal arc welding along longitudinal direction

Article: 2339469 | Received 28 Jan 2024, Accepted 01 Apr 2024, Published online: 12 Apr 2024

References

  • Abdulstaar, M. A., Al-Fadhalah, K. J., & Wagner, L. (2017). Microstructural variation through weld thickness and mechanical properties of peened friction stir welded 6061 aluminum alloy joints. Materials Characterization. 126, 64–73. https://doi.org/10.1016/j.matchar.2017.02.011
  • Ahmad, R., & Bakar, M. A. (2011). Effect of post-weld heat treatment on microstructure and mechanical properties of welded joints by gas metal arc welding cold metal transfer method. Materials & Design, 32(10), 5120–5126. https://doi.org/10.1016/j.matdes.2011.06.007
  • Almanar, I. P., Hanapi, M. H., Anasyida, A. S., & Hussain, Z. (2012). Friction stir welding of 6061-T6 aluminum alloy. Advanced Materials Research, 501, 145–149. https://doi.org/10.1016/j.ijlmm.2019.04.007
  • Al-Wajidi, W., Deiab, I., Defersha, F. M., & Elsayed, A. (2019). Effect of MQL on the microstructure and strength of friction stir welded 6061 Al alloy. The International Journal of Advanced Manufacturing Technology, 101(1–4), 901–912. https://doi.org/10.1007/s00170-018-2957-y
  • Ambriz, R. R., Barrera, G., García, R., & López, V. H. (2010). the microstructure and mechanical strength of Al 6061-T6 GMA welds obtained with the modified indirect electric arc joint. Materials & Design, 31(6), 2978–2986. https://doi.org/10.1016/j.matdes.2009.12.017
  • Ambriz, R. R., Mesmacque, G., Ruiz, A., Amrouche, A., López, V. H., & Benseddiq, N. (2010). Fatigue crack growth under a constant amplitude loading of Al-6061-T6 welds obtained by modified indirect electric arc technique. Science and Technology of Welding and Joining, 15(6), 514–521. https://doi.org/10.1179/136217110X12785889549589
  • Borrego, L. P. (2004). Microstructure dependent fatigue crack growth in aged hardened aluminium alloys. International Journal of Fatigue, 26(12), 1321–1331. https://doi.org/10.1016/j.ijfatigue.2004.04.004
  • Borrego, L. P. (2009). Fatigue crack growth in heat-treated aluminum alloys. Engineering Failure Analysis, 17(1), 11–18. https://doi.org/10.1016/j.engfailanal.2008.11.007
  • Brahami, A., Bouchouicha, B., Zemri, M., & Fajoui, J. (2018). Fatigue crack growth rate, microstructure and mechanical properties of diverse range of aluminum alloy: a comparison. Mechanics and Mechanical Engineering, 22(1), 329–340. https://doi.org/10.2478/mme-2018-0028
  • D’Urso, G., Giardini, C., Lorenzi, S., & Pastore, T. (2014). Fatigue crack growth in the welding nugget of FSW joints of a 6060 aluminum alloy. Journal of Materials Processing Technology. 214(10), 2075–2084. https://doi.org/10.1016/j.jmatprotec.2014.01.013
  • Dai, Q., Liang, Z., Chen, G., Meng, L., & Shi, Q. (2013). Explore the mechanism of high fatigue crack propagation rate in fine microstructure of friction stir welded aluminum alloy. Materials Science and Engineering: A, 580, 184–190. https://doi.org/10.1016/j.msea.2013.05.057
  • FadilIslamović, P. (2009). Bend testing of the welded joints [Paper presentation].7th International Scientific Conference on Production Engineering Development and Modernization of Production, (Vol. 23, pp. 12). https://doi.org/10.12379/s00170-019
  • Fahimpour, V., Sadrnezhaad, S. K., & Karimzadeh, F. (2013). Microstructure and mechanical property change during FSW and GTAW of Al6061 alloy. Metallurgical and Materials Transactions A, 44(5), 2187–2195. https://doi.org/10.1016/j.ijfatigue.2020.105556
  • Fan, C., Yang, S., Zhu, M., & Bai, Y. (2021). Microstructure and fatigue properties of 6061 aluminum alloy laser-MIG hybrid welding joint. Advances in Materials Science and Engineering, 2021, 1–12. https://doi.org/10.1155/2021/1933942
  • Guzmán, I., Granda, E., Vargas, B., Cruz, C., Avila, Y., & Acevedo, J. (2019). Tensile and fracture behavior in 6061-T6 and 6061-T4 aluminum alloys welded by pulsed metal transfer GMAW. The International Journal of Advanced Manufacturing Technology, 103(5-8), 2553–2562. https://doi.org/10.1007/s00170-019-03673-7
  • Hagihara, A., Oda, Y., & Noguchi, H. (2007). Influence of testing frequency on fatigue crack growth of 6061-T6 aluminum alloy in hydrogen gas environment. Key Engineering Materials, 353-358, 174–177. https://doi.org/10.4028/www.scientific.net/KEM.353-358.174
  • Hanlon, T., Kwon, Y., & Suresh, S. (2003). Grain size effects on the fatigue response of nanocrystal line metals. Scripta Materialia, 49(7), 675–680. https://doi.org/10.1016/S1359-6462(03)00393-2
  • Harara, W. (2015). Evaluation of the 6082 T6 aluminum plates welded joints by digitized film radiographs and digital radiographs taken by fluoroscopy. Russian Journal of Nondestructive Testing, 51(9), 580–586. https://doi.org/10.1134/S1061830915090065
  • Huang, J. C., Shin, C. S., & Chan, S. L. I. (2004). Effect of temper, specimen orientation and test temperature on tensile and fatigue properties of wrought and PM AA6061-Alloys. International Journal of Fatigue, 26(7), 691–703. https://doi.org/10.1016/j.ijfatigue.2003.11.006
  • Ilman, M. N. (2010). Comparative study on fatigue crack growth rate behaviors of friction-stir welded aluminum alloys 2024 T-3 and 6061-T-6. Seminar Nasional Tahunan Teknik Mesin (SNTTM), 9, 13–15. https://doi.org/10.1016/S1003-6326(14)63371-9
  • Jata, K. V., Sankaran, K. K., & Ruschau, J. J. (2000). Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050–T7451. Metallurgical and Materials Transactions A, 31(9), 2181–2192. https://doi.org/10.1007/s11661-000-0136-9
  • Jian, H., Luo, J., Tang, X., Li, X., & Yan, C. (2017). Influence of microstructure on fatigue crack propagation behavior of an aluminum alloy: Role of sheet thickness. Engineering Fracture Mechanics, 180, 105–114. https://doi.org/10.1016/j.engfracmech.2017.05.038
  • Jogi, B. F., Brahmankar, P. K., Nanda, V. S., & Prasad, R. C. (2008). Some study on fatigue crack growth of aluminum alloy 6061. Journal of Materials Processing Technology, 201(1-3), 380–384. https://doi.org/10.1016/j.jmatprotec.2007.11.302
  • John, R., Jata, K. V., & Sadananda, K. (2003). Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys. International Journal of Fatigue 25(9–11), 939–948. https://doi.org/10.1016/j.ijfatigue.2003.08.002
  • Lados, D. A., & Apelian, D. (2006). The effect of residual stress on the fatigue crack growth behavior of Al-Si-Mg cast alloys – Mechanisms and corrective mathematical models. Metallurgical and Materials Transactions A, 37(1), 133–145. https://doi.org/10.1016/j.ijfatigue.2011.01.019
  • Lakshminarayanan, A. K., Balasubramanian, V., & Elangovan, K. (2009). Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. The International Journal of Advanced Manufacturing Technology, 40(3–4), 286–296. https://doi.org/10.1007/s00170-007-1325-0
  • Lin, S., Deng, Y.-L., Tang, J.-G., Deng, S.-H., Lin, H.-Q., Ye, L.-Y., & Zhang, X.-M. (2019). Microstructures and fatigue behavior of metal inert-gas-welded joints for extruded Al-Mg-Si alloy. Materials Science and Engineering: A, 745, 63–73. https://doi.org/10.1016/j.msea.2018.12.080
  • Li, L., Tong, J. H., Wan, F. R., & Long, Y. (2006). Microstructure and mechanical properties of friction stir welded thin sheets of 2024–T4 aluminum alloy. Transactions of the Nonferrous Metals Society of China, 16, 1256–1260. https://doi.org/10.1016/j.jmrt.2017.10.010
  • Liu, M., Liu, Z., Bai, S., Xia, P., Ying, P., & Zeng, S. (2016). Solute cluster size effect on the fatigue crack propagation resistance of an under-aged Al-Cu-Mg alloy. International Journal of Fatigue, 84, 104–112. https://doi.org/10.1016/j.ijfatigue.2015.11.023
  • Liu, Z., Li, F., Xia, P., Bai, S., Gu, Y., Yu, D., & Zeng, S. (2015). Mechanisms for goss-grains induced crack detection and enhanced fatigue crack propagation resistance in fatigue stage II of an AA2524 alloy. Materials Science Engineering. 625, 271–277. https://doi.org/10.1016/j.msea.2014.12.021
  • Li, S., Zhang, Y., Qi, L., & Kang, Y. (2018). Effect of single tensile overload on fatigue crack growth behavior in DP780 dual phase steel. International Journal of Fatigue, 106, 49–55. https://doi.org/10.1016/j.ijfatigue.2017.09.018
  • Malopheyev, S., Vysotskiy, I., Kulitskiy, V., Mironov, S., & Kaibyshev, R. (2016). Optimization of processing-microstructure properties relationship in friction-stir welded 6061–T6 aluminum alloy. Materials Science and Engineering: A, 662, 136–143. https://doi.org/10.1016/j.msea.2016.03.063
  • Masuda, K., Ishihara, S., & Oguma, N. (2021). Effect of specimen thickness and stress intensity factor range on plasticity-induced fatigue crack closure in A7075-T6 alloy. Materials, 14(3), 664. https://doi.org/10.3390/ma14030664
  • Mayén, J., Abúndez, A., Pereyra, I., Colín, J., Blanco, A., & Serna, S. (2017). Comparative analysis of the fatigue short crack growth on Al 6061-T6 alloy by the exponential crack growth equation and a proposed empirical model. Engineering Fracture Mechanics, 177, 203–217. https://doi.org/10.1016/j.engfracmech.2017.03.036
  • Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., De Smet, P., Haszler, A., & Vieregge, A. (2000). Recent development in aluminum alloys for the automotive industry. Materials Science and Engineering: A, 280(1), 37–49. https://doi.org/10.1016/S0921-5093(99)00653-X
  • Mohsein, Z. H. (2015). Improvement of bending strength for inert gas weld joint aluminum alloys 6061-T6 using shot peening. Journal of Advanced Manufacturing Technology, 9, 27–39. https://doi.org/10.12379/136217110X12785889
  • Nikseresht, Z., Karimzadeh, F., Golozar, M. A., & Heidarbeigy, M. (2015). Effect of heat treatment on microstructure and corrosion behavior of Al6061 alloy weldment. Materials & Design (1980-2015), 31(5), 2643–2648. https://doi.org/10.1016/j.matdes.2009.12.001
  • Pao, P., Jones, H., Cheng, S., & Feng, C. (2003). Fatigue crack propagation in ultrafine-grained al-mg alloy. International Journal of Fatigue, 27(10–12), 1164–1169. https://doi.org/10.1016/j.ijfatigue.2005.06.027
  • Henkel, S. E. Liebelt, H. Biermann, S. Ackermann, Crack growth behavior of aluminum alloy 6061 T 651 under uniaxial and biaxial planar testing condition, Frattura ed Integrità Strutturale, 34, 2015, 34, 466–475. https://doi.org/10.3221/IGF-ESIS.34.52
  • Sajith, S., Murthy, K. S. R. K., & Robi, P. S. (2020). Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6. International Journal of Fatigue, 130, 105285. https://doi.org/10.1016/j.ijfatigue.2019.105285
  • Salam, I., Muhammad, W., & Ejaz, N. (2010). Fatigue crack growth in an aluminum alloy-fractographic study. Materials Science and Engineering, 146, 123–138. https://doi.org/10.1088/1757-899X/146/1/012010
  • Sashank, J. S., Sampath, P., Krishna, P. S., Sagar, R., Venukumar, S., & Muthukumaran, S. (2018). Effects of friction stir welding on microstructure and mechanical properties of 6063 aluminium alloy. Materials Today: Proceedings, 5(2), 8348–8353. https://doi.org/10.1016/j.matpr.2017.11.527
  • Serrano PeRez, J., & Ambriz, R. R. (2016). Recovery of mechanical properties of a 6061-T6 aluminum weld by heat treatment after welding. The Minerals, Metals & Materials Society and ASM International, 47, 3412–3422. https://doi.org/10.1007/s11661-016-3483-x
  • Serrano PeRez, J., & Ambriz, R. R. (2016). Recovery of mechanical properties of a 6061-T6 aluminum weld by heat treatment after welding. The Minerals, Metals & Materials Society and ASM International (Vol. 41, pp. 123–132). Pittsburgh, PA: Springer International Publishing. https:// https://doi.org/10.1007/s11661-016-3483-x
  • Svensson, L. E., Karlsson, L., Larsson, H., Karlsson, B., Fazzini, M., & Karlsson, J. (2000). Microstructure and mechanical properties of friction stir welded aluminium alloys with special reference to AA 5083 and AA 6082. Science and Technology of Welding and Joining, 5(5), 285–296. https://doi.org/10.1179/136217100101538335
  • Vasco-Olmo, J. M., James, M. N., Christopher, C. J., Patterson, E. A., & Díaz, F. A. (2016). Assessment of crack tip plastic zone and shape and its influence on crack tip shielding. Fatigue & Fracture of Engineering Materials & Structures, 39(8), 969–981. https://doi.org/10.1111/ffe.12436
  • Vikram, N., Agrawal, S., & Kumar, R. (2014). Effect of strain hardening on fatigue crack growth in5052 Al alloy for constant amplitude loading. SYLWAN, 158, 110–124. https://doi.org/10.14807/ijmp.v6i4.342
  • Vikram, N., & Kumar, R. (2015). Effect of strain hardening on fatigue crack closure in aluminum alloy. International Journal of Engineering Research and Science & Technology, 4, 123–129. https://doi.org/10.1179/136217115601538335
  • Vikram, N., & Kumar, R. (2015). Study of fatigue crack growth in 6063-T6 aluminum alloy. Independent Journal of Management & Production, 6(4), 970–990. https://doi.org/10.14807/ijmp.v6i4.343
  • Viveros, K. C., Ambriz, R. R., Amrouche, A., Talha, A., García, C., & Jaramillo, D. (2014). Cold hole expansion effect on the fatigue crack growth in welds of a 6061-T6 aluminum alloy. Journal of Materials Processing Technology, 214(11), 2606–2616. https://doi.org/10.1016/j.jmatprotec.2014.05.030
  • Xu, G. F., Qian, J., Xiao, D., Deng, Y., Lu, L. Y., & Yin, Z. M. (2016). Mechanical properties and microstructure of TIG and FSW joints of a new Al-Mg-Mn-Sc-Zr alloy. Journal of Materials Engineering and Performance, 25(4), 1249–1256. https://doi.org/10.1007/s11665-016-1942-6
  • Yang, B., Vasco-Olmo, J. M., Díaz, F. A., & James, M. N. (2018). A more rationalisation of fatigue crack growth rate data for various specimen geometries and stress ratios using the CJP model. International Journal of Fatigue, 114, 189–197. https://doi.org/10.1016/j.ijfatigue.2018.05.027
  • Zhang, L., Zhong, H., Li, S., Zhao, H., Chen, J., & Qi, L. (2020). Microstructure, Mechanical properties and fatigue crack growth behavior of friction stir welded joint of 6061-T6 aluminum alloy. International Journal of Fatigue, 135, 105556. https://doi.org/10.1016/j.ijfatigue.2020.105556
  • Živojinović, D., Sedmak, A., & Grbović, A. (2013). Crack growth analysis in friction stir welded joint zones using extended finite element method. Structural Integrity and Life, 13, 179–188. https://doi.org/10.1016/j.ijfatigue.2013.1052869