849
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Are the soils degraded by the photovoltaic power plant?

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2294542 | Received 29 Aug 2023, Accepted 08 Dec 2023, Published online: 06 Feb 2024

References

  • Alp, D., & Bulantekin, Ö. (2021). The microbiological quality of various foods dried by applying different drying methods: A review. European Food Research and Technology = Zeitschrift Fur Lebensmittel-Untersuchung und -Forschung. A, 247(6), 1–22. https://doi.org/10.1007/s00217-021-03731-z
  • Acharya, C. L., Hati, K. M., & Bandyopadhyay, K. K. (2005). Mulches. In D. Hillel (Ed.), Encyclopedia of soils in the environment (pp. 521–532). Elsevier. https://doi.org/10.1016/B0-12-348530-4/00250-2
  • Achinas, S., Achinas, V., & Euverink, G. J. W. (2020). Microbiology and biochemistry of anaerobic digesters: An overview. In L. Singh, A. Yousuf, & D. Madhab Mahapatra (Eds.), Bioreactors (pp. 17–26). Elsevier.
  • Al-Kayssi, A. W., Al-Karaghouli, A. A., Hasson, A. M., & Beker, S. A. (1990). Influence of soil moisture content on soil temperature and heat storage under greenhouse conditions. Journal of Agricultural Engineering Research, 45, 241–252. https://doi.org/10.1016/S0021-8634(05)80152-0
  • Amézketa, E. (1999). Soil aggregate stability: A review. Journal of Sustainable Agriculture, 14(2–3), 83–151. https://doi.org/10.1300/J064v14n02_08
  • Armstrong, A., Ostle, N. J., & Whitaker, J. (2016). Solar park microclimate and vegetation management effects on grassland carbon cycling. Environmental Research Letters, 11(7), 074016. https://doi.org/10.1088/1748-9326/11/7/074016
  • Assefa, S., & Tadesse, S. (2019). The principal role of organic fertilizer on soil properties and agricultural productivity-A review. Agricultural Research & Technology: Open Access Journal, 22(2), 556192.
  • Atkinson, J. A., Hawkesford, M. J., Whalley, W. R., Zhou, H., & Mooney, S. J. (2020). Soil strength influences wheat root interactions with soil macropores. Plant, Cell & Environment, 43(1), 235–245. https://doi.org/10.1111/pce.13659
  • Awasthi, P., & Laxmi, A. (2021). Root architectural plasticity in changing nutrient availability. In S. Mukherjee & F. Baluška (Eds.), Rhizobiology: Molecular physiology of plant roots, signaling and communication in plants (pp. 25–37). Springer International Publishing. https://doi.org/10.1007/978-3-030-84985-6_2
  • Bashir, O., Ali, T., Baba, Z. A., Rather, G. H., Bangroo, S. A., Mukhtar, S. D., Naik, N., Mohiuddin, R., Bharati, V., & Bhat, R. A. (2021). Soil organic matter and its impact on soil properties and nutrient status. In G. H. Dar, R. A. Bha, M. A. Mehmood, & K. R. Hakeem (Eds.), Microbiota and biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs (pp. 129–159). Springer International Publishing. https://doi.org/10.1007/978-3-030-61010-4_7
  • Bastida, F., Eldridge, D. J., García, C., Kenny Png, G., Bardgett, R. D., & Delgado-Baquerizo, M. (2021). Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. The ISME Journal, 15(7), 2081–2091. https://doi.org/10.1038/s41396-021-00906-0
  • Basu, S., Kumar, G., Chhabra, S., & Prasad, R. (2021). Chapter 13 – Role of soil microbes in biogeochemical cycle for enhancing soil fertility. In J. P. Verma, C. A. Macdonald, V. K. Gupta, & A. R. Podile (Eds.), New and future developments in microbial biotechnology and bioengineering (pp. 149–157). Elsevier. https://doi.org/10.1016/B978-0-444-64325-4.00013-4
  • Baveye, P. C., Schnee, L. S., Boivin, P., Laba, M., & Radulovich, R. (2020). Soil organic matter research and climate change: Merely re-storing carbon versus restoring soil functions. Frontiers in Environmental Science, 8, 579904. https://doi.org/10.3389/fenvs.2020.579904
  • Bernhard, A. (2010). The nitrogen cycle: Processes, players, and human impact. Nature Education Knowledge, 3(10), 25.
  • Bhattacharyya, R., Bhatia, A., Ghosh, B. N., Santra, P., Mandal, D., Kumar, G., Singh, R. J., Madhu, M., Ghosh, A., Mandal, A. K., Paul, R., Datta, A., Sharma, P. C., Mandal, U. K., Jha, P., Anil, K. S., Lalitha, M., Kumar, M., Panwar, N. R., … Chaudhari, S. K. (2023). Soil degradation and mitigation in agricultural lands in the Indian Anthropocene. European Journal of Soil Science, 74(4), e13388.
  • Błońska, E., Prażuch, W., & Lasota, J. (2023). Deadwood affects the soil organic matter fractions and enzyme activity of soils in altitude gradient of temperate forests. Forest Ecosystems, 10, 100115. https://doi.org/10.1016/j.fecs.2023.100115
  • Brady, N. C., Ray, R., Weil, Ray., & R., Weil. (2008). The nature and properties of soils (Vol. 13). Prentice Hall.
  • Brempong, M., & Addo-Danso, A. (2022). Improving soil fertility with organic fertilizers. New Generation of Organic Fertilizers, 1.
  • Brust, G. E. (2019). "Management strategies for organic vegetable fertility." Safety and practice for organic food (pp. 193–212). Academic Press.
  • Buchan, G. D. (2011). Temperature effects in soil. In J. Gliński, J. Horabik, & J. Lipiec (Eds.), Encyclopedia of agrophysics, encyclopedia of earth sciences series (pp. 891–895). Springer Netherlands. https://doi.org/10.1007/978-90-481-3585-1_170
  • Cabrera, J., Conesa, C. M., & Del Pozo, J. C. (2022). May the dark be with roots: A perspective on how root illumination may bias in vitro research on plant–environment interactions. The New Phytologist, 233(5), 1988–1997. https://doi.org/10.1111/nph.17936
  • Cai, Z., Yan, X., & Gu, B. (2022). Applying C:N ratio to assess the rationality of estimates of carbon sequestration in terrestrial ecosystems and nitrogen budgets. Carbon Research, 1(1), 2. https://doi.org/10.1007/s44246-022-00004-6
  • Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W., Burton, A. J., Dukes, J. S., Emmett, B., Frey, S. D., Heskel, M. A., Jiang, L., Machmuller, M. B., Mohan, J., Panetta, A. M., Reich, P. B., Reinsch, S., Wang, X., Allison, S. D., Bamminger, C., … Tietema, A. (2016). Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 13797–13802. https://doi.org/10.1073/pnas.1605365113
  • Chia, R. W., Lee, J.-Y., Jang, J., Kim, H., & Kwon, K. D. (2022). Soil health and microplastics: A review of the impacts of microplastic contamination on soil properties. Journal of Soils and Sediments, 22(10), 2690–2705. https://doi.org/10.1007/s11368-022-03254-4
  • Choi, C. S., Cagle, A. E., Macknick, J., Bloom, D. E., Caplan, J. S., & Ravi, S. (2020). Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure. Frontiers in Environmental Science, 8, 140. https://doi.org/10.3389/fenvs.2020.00140
  • Chowdhury, S., Bolan, N., Farrell, M., Sarkar, B., Sarker, J. R., Kirkham, M. B., Hossain, M. Z., & Kim, G.-H. (2021). Chapter two - Role of cultural and nutrient management practices in carbon sequestration in agricultural soil. In D. L. Sparks (Ed.), Advances in agronomy (pp. 131–196). Academic Press. https://doi.org/10.1016/bs.agron.2020.10.001
  • Cui, J., Yuan, X., Zhang, Q., Zhou, J., Lin, K., Xu, J., Zeng, Y., Wu, Y., Cheng, L., Zeng, Q., Mei, K., & Chen, Y. (2021). Nutrient availability is a dominant predictor of soil bacterial and fungal community composition after nitrogen addition in subtropical acidic forests. PloS One, 16(2), e0246263. https://doi.org/10.1371/journal.pone.0246263
  • D’Alò, F., Odriozola, I., Baldrian, P., Zucconi, L., Ripa, C., Cannone, N., Malfasi, F., Brancaleoni, L., & Onofri, S. (2021). Microbial activity in alpine soils under climate change. The Science of the Total Environment, 783, 147012. https://doi.org/10.1016/j.scitotenv.2021.147012
  • de Carvalho, A. F., Fernandes-Filho, E. I., Daher, M., Gomes, L. d C., Cardoso, I. M., Fernandes, R. B. A., & Schaefer, C. E. G. R. (2021). Microclimate and soil and water loss in shaded and unshaded agroforestry coffee systems. Agroforestry Systems, 95(1), 119–134. https://doi.org/10.1007/s10457-020-00567-6
  • Dietz, K.-J., & Herth, S. (2011). Plant nanotoxicology. Trends in Plant Science, 16(11), 582–589. https://doi.org/10.1016/j.tplants.2011.08.003
  • Ding, S., & Su, P. (2010). Effects of tree shading on maize crop within a Poplar-maize compound system in Hexi Corridor oasis, northwestern China. Agroforestry Systems, 80(1), 117–129. https://doi.org/10.1007/s10457-010-9287-x
  • Dipta, S. S. (2022). Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses. Applied Energy, 328, 120208.
  • Duan, Y., Yang, H., Shi, T., Zhang, W., Xu, M., & Gao, S. (2021). Long-term manure application to improve soil macroaggregates and plant-available nitrogen in a Mollisol. Soil and Tillage Research, 211, 105035. https://doi.org/10.1016/j.still.2021.105035
  • Elamri, Y., Cheviron, B., Mange, A., Dejean, C., Liron, F., & Belaud, G. (2018). Rain concentration and sheltering effect of solar panels on cultivated plots. Hydrology and Earth System Sciences, 22(2), 1285–1298. https://doi.org/10.5194/hess-22-1285-2018
  • Eldridge, D. J., Guirado, E., Reich, P. B., Ochoa-Hueso, R., Berdugo, M., Sáez-Sandino, T., Blanco-Pastor, J. L., Tedersoo, L., Plaza, C., Ding, J., Sun, W., Mamet, S., Cui, H., He, J.-Z., Hu, H.-W., Sokoya, B., Abades, S., Alfaro, F., Bamigboye, A. R., … Delgado-Baquerizo, M. (2023). The global contribution of soil mosses to ecosystem services. Nature Geoscience, 16(5), 430–438. https://doi.org/10.1038/s41561-023-01170-x
  • Fenchel, T. (2013). Microorganisms (microbes), role of. In S. A. Levin (Ed.), Encyclopedia of biodiversity (2nd ed., pp. 299–308). Academic Press. https://doi.org/10.1016/B978-0-12-384719-5.00094-0
  • Fineschi, S., & Loreto, F. (2020). A survey of multiple interactions between plants and the urban environment. Frontiers in Forests and Global Change, 3, 30. https://doi.org/10.3389/ffgc.2020.00030
  • Fonseca, M. J., & Tavares, F. (2011). The bactericidal effect of sunlight. The American Biology Teacher, 73(9), 548–552. https://doi.org/10.1525/abt.2011.73.9.8
  • Francis, C. A., & Clegg, M. D. (1990). Crop rotations in sustainable production systems. In Sustainable agricultural systems. CRC Press.
  • Frey, S. D., Lee, J., Melillo, J. M., & Six, J. (2013). The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change, 3(4), 395–398. https://doi.org/10.1038/nclimate1796
  • Fuentes, M., Baigorri, R., & Garcia-Mina, J. M. (2020). Maturation in composting process, an incipient humification-like step as multivariate statistical analysis of spectroscopic data shows. Environmental Research, 189, 109981. https://doi.org/10.1016/j.envres.2020.109981
  • Gadikota, G. (2021). Carbon mineralization pathways for carbon capture, storage and utilization. Communications Chemistry, 4(1), 23. https://doi.org/10.1038/s42004-021-00461-x
  • Gasmo, J. M., Rahardjo, H., & Leong, E. C. (2000). Infiltration effects on stability of a residual soil slope. Computers and Geotechnics, 26(2), 145–165. https://doi.org/10.1016/S0266-352X(99)00035-X
  • Gentry, T., Fuhrmann, J. J., & Zuberer, D. A. (Eds.). (2021). Principles and applications of soil microbiology. Elsevier.
  • Gerke, J. (2022). The central role of soil organic matter in soil fertility and carbon storage. Soil Systems, 6(2), 33. https://doi.org/10.3390/soilsystems6020033
  • Ghazi, S., & Ip, K. (2014). The effect of weather conditions on the efficiency of PV panels in the southeast of UK. Renewable Energy, 69, 50–59. https://doi.org/10.1016/j.renene.2014.03.018
  • Gong, J., Li, C., R., & Wasielewski, M. (2019). Advances in solar energy conversion. Chemical Society Reviews, 48(7), 1862–1864. https://doi.org/10.1039/C9CS90020A
  • Guhra, T., Stolze, K., & Totsche, K. U. (2022). Pathways of biogenically excreted organic matter into soil aggregates. Soil Biology and Biochemistry, 164, 108483. https://doi.org/10.1016/j.soilbio.2021.108483
  • Gunina, A., & Kuzyakov, Y. (2022). From energy to (soil organic) matter. Global Change Biology, 28(7), 2169–2182. https://doi.org/10.1111/gcb.16071
  • Guo, Q., Liang, F., Li, X.-B., Gao, Y.-J., Huang, M.-Y., Wang, Y., Xia, S.-G., Gao, X.-Y., Gan, Q.-C., Lin, Z.-S., Tung, C.-H., & Wu, L.-Z. (2019). Efficient and selective CO2 reduction integrated with organic synthesis by solar energy. Chem, 5(10), 2605–2616. https://doi.org/10.1016/j.chempr.2019.06.019
  • Guo, X., Yang, Y., Liu, H., Liu, G., Liu, W., Wang, Y., Zhao, R., Ming, B., Xie, R., Wang, K., Li, S., & Hou, P. (2022). Effects of solar radiation on dry matter distribution and root morphology of high yielding maize cultivars. Agriculture, 12(2), 299. https://doi.org/10.3390/agriculture12020299
  • Gürsoy, S. (2021). Soil compaction due to increased machinery intensity in agricultural production: its main causes, effects and management. Technology in agriculture, 1–18.
  • Guttières, R., Nunan, N., Raynaud, X., Lacroix, G., Barot, S., Barré, P., Girardin, C., Guenet, B., Lata, J.-C., & Abbadie, L. (2021). Temperature and soil management effects on carbon fluxes and priming effect intensity. Soil Biology and Biochemistry, 153, 108103. https://doi.org/10.1016/j.soilbio.2020.108103
  • Hartley, I. P., Hill, T. C., Chadburn, S. E., & Hugelius, G. (2021). Temperature effects on carbon storage are controlled by soil stabilisation capacities. Nature Communications, 12(1), 6713. https://doi.org/10.1038/s41467-021-27101-1
  • Hartmann, M., & Six, J. (2022). Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 4(1), 4–18. https://doi.org/10.1038/s43017-022-00366-w
  • Hayat, M. B., Ali, D., Monyake, K. C., Alagha, L., & Ahmed, N. (2019). Solar energy—A look into power generation, challenges, and a solar-powered future. International Journal of Energy Research, 43(3), 1049–1067. https://doi.org/10.1002/er.4252
  • Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of radiation on evaporation rates: A numerical analysis. Water Resources Research, 56(10), e2020WR027332. https://doi.org/10.1029/2020WR027332
  • Hesami, E., Farshidi, A., Sadatebrahimi, F., & Talebi, A. (2014). The role of soil organisms on soil stability; (A review). International Journal OF Current Life Sciences, 4, 10328.
  • Hicks, L. C., Lajtha, K., & Rousk, J. (2021). Nutrient limitation may induce microbial mining for resources from persistent soil organic matter. Ecology, 102(6), e03328. https://doi.org/10.1002/ecy.3328
  • Howe, J. A., & Smith, A. P. (2021). 2– The soil habitat. In T. J. Gentry, J. J. Fuhrmann, & D. A. Zuberer (Eds.), Principles and applications of soil microbiology (3rd ed., pp. 23–55). Elsevier. https://doi.org/10.1016/B978-0-12-820202-9.00002-2
  • Huang, X., Horn, R., & Ren, T. (2022). Soil structure effects on deformation, pore water pressure, and consequences for air permeability during compaction and subsequent shearing. Geoderma, 406, 115452. https://doi.org/10.1016/j.geoderma.2021.115452
  • Hussain, A., Bashir, H., Zafar, S., Rehman, R., Khalid, M., Awais, M., Sadiq, M., & Amjad, I. (2023). The importance of soil organic matter (SOM) on soil productivity and plant growth. Biological and Agricultural Sciences Research Journal, 2023(1), 11–11. https://doi.org/10.54112/basrj.v2023i1.11
  • Jäger-Waldau, A., Huld, T., & Szabo, S. (2017 Residential photovoltaic electricity generation in the European Union 2017-Opportunities and challenges [Paper presentation]. 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC). Presented at the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) (pp. 2167–2169). https://doi.org/10.1109/PVSC.2017.8366336
  • Jahanfar, A., Drake, J., Sleep, B., & Margolis, L. (2019). Evaluating the shading effect of photovoltaic panels on green roof discharge reduction and plant growth. Journal of Hydrology, 568, 919–928. https://doi.org/10.1016/j.jhydrol.2018.11.019
  • Jangir, C., Kumar, S., Kumar., & R. S., Meena. (2019). Significance of soil organic matter to soil quality and evaluation of sustainability. In Sustainable agriculture (pp. 357–381). Scientific Publisher.
  • Javadi, F. S., Metselaar, H. S. C., & Ganesan, P. (2020). Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review. Solar Energy, 206, 330–352. https://doi.org/10.1016/j.solener.2020.05.106
  • Jiang, Z., Li, L., Fang, Y., Lin, J., Liu, S., Wu, Y., & Huang, X. (2022). Eutrophication reduced the release of dissolved organic carbon from tropical seagrass roots through exudation and decomposition. Marine Environmental Research, 179, 105703. https://doi.org/10.1016/j.marenvres.2022.105703
  • Joseph, S., Cowie, A. L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Graber, E. R., Ippolito, J. A., Kuzyakov, Y., Luo, Y., Ok, Y. S., Palansooriya, K. N., Shepherd, J., Stephens, S., Weng, Z. (., & Lehmann, J. (2021). How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13(11), 1731–1764. https://doi.org/10.1111/gcbb.12885
  • Kannojia, P., Sharma, P. K., & Sharma, K. (2019). Chapter 3 - Climate change and soil dynamics: Effects on soil microbes and fertility of soil. In K. K. Choudhary, A. Kumar, & A. K. Singh (Eds.), Climate change and agricultural ecosystems (pp. 43–64). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-816483-9.00003-7
  • Khaliq, A., Perveen, S., Alamer, K. H., Zia Ul Haq, M., Rafique, Z., Alsudays, I. M., Althobaiti, A. T., Saleh, M. A., Hussain, S., & Attia, H. (2022). Arbuscular mycorrhizal fungi symbiosis to enhance plant–soil interaction. Sustainability, 14(13), 7840. https://doi.org/10.3390/su14137840
  • Khan, A., & Rahman, A. u (2023). Spatial analysis and extent of soil erosion risk using the rusle approach in the Swat River Basin, Eastern Hindukush, Pakistan. Journal of Water and Climate Change, 14(6), 1881–1899.
  • Kheirfam, H., & Asadzadeh, F. (2020). Stabilizing sand from dried-up lakebeds against wind erosion by accelerating biological soil crust development. European Journal of Soil Biology, 98, 103189. https://doi.org/10.1016/j.ejsobi.2020.103189
  • Khusainov, A. T., Syrlybayev, M. K., & Ayapbergenova, A. S. (2021). Environmental safety and efficacy of ordinary chernozem fertilization with “Agrobionov” preparation under barley crops. IOP Conference Series: Earth and Environmental Science, 624(1), 012227. https://doi.org/10.1088/1755-1315/624/1/012227
  • Kibblewhite, M. G., Ritz, K., & Swift, M. J. (2008). Soil health in agricultural systems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1492), 685–701. https://doi.org/10.1098/rstb.2007.2178
  • Kicińska, A., Pomykała, R., & Izquierdo-Diaz, M. (2022). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73(1), e13203. https://doi.org/10.1111/ejss.13203
  • Kicińska, A., & Wikar, J. (2021). Ecological risk associated with agricultural production in soils contaminated by the activities of the metal ore mining and processing industry - Example from southern Poland. Soil and Tillage Research, 205, 104817. https://doi.org/10.1016/j.still.2020.104817
  • Koestel, J., & Schlüter, S. (2019). Quantification of the structure evolution in a garden soil over the course of two years. Geoderma, 338, 597–609. https://doi.org/10.1016/j.geoderma.2018.12.030
  • Kpemoua, T. P. I., Barré, P., Chevallier, T., Houot, S., & Chenu, C. (2022). Drivers of the amount of organic carbon protected inside soil aggregates estimated by crushing: A meta-analysis. Geoderma, 427, 116089. https://doi.org/10.2139/ssrn.4100199
  • Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G., & Heitman, J. L. (2020). The effects of compost incorporation on soil physical properties in urban soils – A concise review. Journal of Environmental Management, 261, 110209. https://doi.org/10.1016/j.jenvman.2020.110209
  • Krause, H.-M., Stehle, B., Mayer, J., Mayer, M., Steffens, M., Mäder, P., & Fliessbach, A. (2022). Biological soil quality and soil organic carbon change in biodynamic, organic, and conventional farming systems after 42 years. Agronomy for Sustainable Development, 42(6), 117. https://doi.org/10.1007/s13593-022-00843-y
  • Kubicki, J. D., & Ohno, T. (2020). Integrating density functional theory modeling with experimental data to understand and predict sorption reactions: Exchange of salicylate for phosphate on goethite. Soil Systems, 4(2), 27. https://doi.org/10.3390/soilsystems4020027
  • Kumar, S., Ahlawat, W., Kumar, R., & Dilbaghi, N. (2015). Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosensors & Bioelectronics, 70, 498–503. https://doi.org/10.1016/j.bios.2015.03.062
  • Kuzyakov, Y., & Zamanian, K. (2019). Reviews and syntheses: Agropedogenesis – humankind as the sixth soil-forming factor and attractors of agricultural soil degradation. Biogeosciences, 16(24), 4783–4803. https://doi.org/10.5194/bg-16-4783-2019
  • Lal, R. (2018). Land use and soil management effects on soil organic matter dynamics on alfisols in Western Nigeria. In R. Lal (Ed.), Soil processes and the carbon cycle (pp. 109–126). CRC Press. https://doi.org/10.1201/9780203739273-9
  • Lambert, Q., Bischoff, A., Cueff, S., Cluchier, A., & Gros, R. (2021). Effects of solar park construction and solar panels on soil quality, microclimate, CO2 effluxes, and vegetation under a Mediterranean climate. Land Degradation & Development, 32(18), 5190–5202. https://doi.org/10.1002/ldr.4101
  • Lambert, Q., Gros, R., & Bischoff, A. (2022). Ecological restoration of solar park plant communities and the effect of solar panels. Ecological Engineering, 182, 106722. https://doi.org/10.1016/j.ecoleng.2022.106722
  • Lamichhane, J. R., Barbetti, M. J., Chilvers, M. I., Pandey, A. K., & Steinberg, C. (2023). Exploiting root exudates to manage soil-borne disease complexes in a changing climate. Trends in Microbiology, 32(1), 27–37. https://doi.org/10.1016/j.tim.2023.07.011
  • Lan, Z., Zhao, Y., Zhang, J., Yang, X., Sial, T. A., & Khan, M. N. (2020). Effects of the long-term fertilization on pore and physicochemical characteristics of loess soil in Northwest China. Agronomy Journal, 112(6), 4741–4751. https://doi.org/10.1002/agj2.20401
  • Lawal, H. M. (2022). Changes in water stable soil aggregates of a typic haplustults under different tillage practices and cover crops. PAT, 18(2), 10–21.
  • Lehmann, A., Leifheit, E. F., Gerdawischke, M., & Rillig, M. C. (2021). Microplastics have shape-and polymer-dependent effects on soil aggregation and organic matter loss–An experimental and meta-analytical approach. Microplastics and Nanoplastics, 1(1)(1), 14. https://doi.org/10.1186/s43591-021-00007-x
  • Li, Y., Li, Z., Cui, S., & Zhang, Q. (2020). Trade-off between soil pH, bulk density and other soil physical properties under global no-tillage agriculture. Geoderma, 361, 114099. https://doi.org/10.1016/j.geoderma.2019.114099
  • Liu, W.-X., Wei, Y.-X., Li, R.-C., Chen, Z., Wang, H.-D., Virk, A. L., Lal, R., Zhao, X., & Zhang, H.-L. (2022). Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. The Science of the Total Environment, 847, 157518. https://doi.org/10.1016/j.scitotenv.2022.157518
  • Lin, J., Dong, H., Liu, D., Wang, K., Yu, Z., & Kumar, A. (2022). Responses of CO2 emission to external organic carbon input in the drying-rewetting cycles: A meta-analysis. Authorea Preprints.
  • Lintemani, M. G., Loss, A., Mendes, C. S., & Fantini, A. C. (2020). Long fallows allow soil regeneration in slash-and-burn agriculture. Journal of the Science of Food and Agriculture, 100(3), 1142–1154. https://doi.org/10.1002/jsfa.10123
  • Liu, W., Chen, H., Zou, Q., & Nie, Y. (2021). Divergent root water uptake depth and coordinated hydraulic traits among typical karst plantations of subtropical China: Implication for plant water adaptation under precipitation changes. Agricultural Water Management, 249, 106798. https://doi.org/10.1016/j.agwat.2021.106798
  • Liu, Y., Fang, Y., & An, S. (2020). How C:N:P stoichiometry in soils and plants responds to succession in Robinia pseudoacacia forests on the Loess Plateau, China. Forest Ecology and Management, 475, 118394. https://doi.org/10.1016/j.foreco.2020.118394
  • Liu, W., Liu, L., Yang, X., Deng, M., Wang, Z., Wang, P., Yang, S., Li, P., Peng, Z., Yang, L., & Jiang, L. (2021). Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. Global Change Biology, 27(16), 3939–3950. https://doi.org/10.1111/gcb.15681
  • Liu, Y., Tang, H., Lin, Z., & Xu, P. (2015). Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnology Advances, 33(7), 1484–1492. https://doi.org/10.1016/j.biotechadv.2015.06.001
  • Li, B., Wang, L., Kaseke, K. F., Li, L., & Seely, M. K. (2016). The impact of rainfall on soil moisture dynamics in a foggy desert. PloS One, 11(10), e0164982. https://doi.org/10.1371/journal.pone.0164982
  • Long, X.-E., Yao, H., Huang, Y., Wei, W., & Zhu, Y.-G. (2018). Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. Soil Biology and Biochemistry, 118, 103–114. https://doi.org/10.1016/j.soilbio.2017.12.014
  • Marrou, H., Wery, J., Dufour, L., & Dupraz, C. (2013). Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. European Journal of Agronomy, 44, 54–66. https://doi.org/10.1016/j.eja.2012.08.003
  • Meslier, V., & DiRuggiero, J. (2019). Chapter 7 - Endolithic microbial communities as model systems for ecology and astrobiology. In J. Seckbach & P. Rampelotto (Eds.), Model ecosystems in extreme environments, astrobiology exploring life on earth and beyond (pp. 145–168). Academic Press. https://doi.org/10.1016/B978-0-12-812742-1.00007-6
  • Miller, M. A., & Zachary, J. F. (2017). Chapter 1 - Mechanisms and morphology of cellular injury, adaptation, and death11for a glossary of abbreviations and terms used in this chapter see e-glossary 1-1. In J. F. Zachary (Ed.), Pathologic basis of veterinary disease (6th ed., pp. 2–43.e19). Mosby. https://doi.org/10.1016/B978-0-323-35775-3.00001-1
  • Mitra, S., Varadachari, C., & Ghosh, K. (2018). Effect of sunlight on decomposition of soil humic and non-humic fractions. Proceedings of the Indian National Science Academy, 83, 949–956.
  • Mo, X., Li, Q., & Ju, J. (2014). Naturally occurring tetramic acid products: Isolation, structure elucidation and biological activity. RSC Advances, 4(92), 50566–50593. https://doi.org/10.1039/C4RA09047K
  • Mokany, K., Ferrier, S., Harwood, T. D., Ware, C., Di Marco, M., Grantham, H. S., Venter, O., Hoskins, A. J., & Watson, J. E. M. (2020). Reconciling global priorities for conserving biodiversity habitat. Proceedings of the National Academy of Sciences of the United States of America, 117(18), 9906–9911. https://doi.org/10.1073/pnas.1918373117
  • Mondal, S., & Chakraborty, D. (2022). Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma, 405, 115443. https://doi.org/10.1016/j.geoderma.2021.115443
  • Morbidelli, R., Saltalippi, C., Flammini, A., & Govindaraju, R. S. (2018). Role of slope on infiltration: A review. Journal of Hydrology, 557, 878–886. https://doi.org/10.1016/j.jhydrol.2018.01.019
  • Morugán-Coronado, A., García-Orenes, F., McMillan, M., & Pereg, L. (2019). The effect of moisture on soil microbial properties and nitrogen cyclers in Mediterranean sweet orange orchards under organic and inorganic fertilization. The Science of the Total Environment, 655, 158–167. https://doi.org/10.1016/j.scitotenv.2018.11.174
  • Mouazen, A. M., & Al-Asadi, R. A. (2018). Influence of soil moisture content on assessment of bulk density with combined frequency domain reflectometry and visible and near infrared spectroscopy under semi field conditions. Soil and Tillage Research, 176, 95–103. https://doi.org/10.1016/j.still.2017.11.002
  • Msimbira, L. A., & Smith, D. L. (2020). The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Frontiers in Sustainable Food Systems, 4, 106. https://doi.org/10.3389/fsufs.2020.00106
  • Mukherjee, S. (2022a). Soil air and temperature. In S. Mukherjee (Ed.), Current topics in soil science: An environmental approach (pp. 105–115). Springer International Publishing. https://doi.org/10.1007/978-3-030-92669-4_10
  • Mukherjee, S. (2022b). Soil fertility and nutrient management. In S. Mukherjee (Ed.), Current topics in soil science: An environmental approach (pp. 241–248). Springer International Publishing. https://doi.org/10.1007/978-3-030-92669-4_24
  • Munawar, M. A., Khoja, A. H., Naqvi, S. R., Mehran, M. T., Hassan, M., Liaquat, R., & Dawood, U. F. (2021). Challenges and opportunities in biomass ash management and its utilization in novel applications. Renewable and Sustainable Energy Reviews, 150, 111451. https://doi.org/10.1016/j.rser.2021.111451
  • Nadaroglu, H., & Polat, M. S. (2022). Chapter 6 - Microbial extremozymes: Novel sources and industrial applications. In: M. Kuddus (Ed.), Microbial extremozymes (pp. 67–88). Academic Press. https://doi.org/10.1016/B978-0-12-822945-3.00019-1
  • Naz, M., Dai, Z., Hussain, S., Tariq, M., Danish, S., Khan, I. U., Qi, S., & Du, D. (2022). The soil pH and heavy metals revealed their impact on soil microbial community. Journal of Environmental Management, 321, 115770. https://doi.org/10.1016/j.jenvman.2022.115770
  • Ni, H., Jing, X., Xiao, X., Zhang, N., Wang, X., Sui, Y., Sun, B., & Liang, Y. (2021). Microbial metabolism and necromass mediated fertilization effect on soil organic carbon after long-term community incubation in different climates. The ISME Journal, 15(9), 2561–2573. https://doi.org/10.1038/s41396-021-00950-w
  • Nikita-Martzopoulou, C. (1981). Effect of solar radiation on soil temperature in pots housed in cold frames. Agricultural Meteorology, 24, 263–274. https://doi.org/10.1016/0002-1571(81)90050-9
  • Nye, P. H. (1981). Changes of pH across the rhizosphere induced by roots. Plant and Soil, 61(1–2), 7–26. https://doi.org/10.1007/BF02277359
  • Obulamah, N. M., Sala, E. S., Luka, E. G., & Umar, H. S. (2022). Factors affecting the adoption of agrochemical safety measures among crop farmers in southern agricultural zone of Nasarawa State, Nigeria. Diyala Agricultural Sciences Journal, 14(2), 165–174. https://doi.org/10.52951/dasj.22140215
  • Ontl, T. A., & Schulte, L. A. (2012). Soil carbon storage. Nature Education Knowledge, 3(10), 35.
  • Pan, H., Chen, M., Feng, H., Wei, M., Song, F., Lou, Y., Cui, X., Wang, H., & Zhuge, Y. (2020). Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil and Tillage Research, 198, 104540. https://doi.org/10.1016/j.still.2019.104540
  • Pandey, M., Tirkey, A., Tiwari, A., Pandey, S. K., & Khan, M. L. (2022). Chapter 10 - Microbial interaction of biochar and its application in soil, water and air. In J. A. Malik (Ed.), Microbes and microbial biotechnology for green remediation (pp. 185–203). Elsevier. https://doi.org/10.1016/B978-0-323-90452-0.00001-3
  • Parikh, S. J., & James, B. R. (2012). Soil: The foundation of agriculture. Nature Education Knowledge, 3(10), 2.
  • Pasley, H. R., Cairns, J. E., Camberato, J. J., & Vyn, T. J. (2019). Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe. Nutrient Cycling in Agroecosystems, 115(3), 373–389. https://doi.org/10.1007/s10705-019-10016-1
  • Patel, K. F., Fansler, S. J., Campbell, T. P., Bond-Lamberty, B., Smith, A. P., RoyChowdhury, T., McCue, L. A., Varga, T., & Bailey, V. L. (2021). Soil texture and environmental conditions influence the biogeochemical responses of soils to drought and flooding. Communications Earth & Environment, 2(1), 9. https://doi.org/10.1038/s43247-021-00198-4
  • Patiño, S., Hernández, Y., Plata, C., Domínguez, I., Daza, M., Oviedo-Ocaña, R., Buytaert, W., & Ochoa-Tocachi, B. F. (2021). Influence of land use on hydro-physical soil properties of Andean páramos and its effect on streamflow buffering. CATENA, 202, 105227. https://doi.org/10.1016/j.catena.2021.105227
  • Phalempin, M., Lippold, E., Vetterlein, D., & Schlüter, S. (2021). Soil texture and structure heterogeneity predominantly governs bulk density gradients around roots. Vadose Zone Journal, 20(5), e20147. https://doi.org/10.1002/vzj2.20147
  • Pisinaras, V., Wei, Y., Bärring, L., & Gemitzi, A. (2014). Conceptualizing and assessing the effects of installation and operation of photovoltaic power plants on major hydrologic budget constituents. The Science of the Total Environment, 493, 239–250. https://doi.org/10.1016/j.scitotenv.2014.05.132
  • Ramkissoon, C., Degryse, F., Young, S., Bailey, E. H., & McLaughlin, M. J. (2021). Effect of soil properties on time-dependent fixation (ageing) of selenate. Geoderma, 383, 114741. https://doi.org/10.1016/j.geoderma.2020.114741
  • Rani, I., Usha, G., Padmaja., & P. C., Rao. (2013). Integrated effect of organic manures and inorganic fertilizers on soil dehydrogenase enzyme activity and yield of maize-spinach cropping system. Crop Research, 46(1–3), 39–43.
  • Raza, A., Rustam, F., Siddiqui, H. U. R., Diez, I. d l T., & Ashraf, I. (2023). Predicting microbe organisms using data of living micro forms of life and hybrid microbes classifier. PloS One, 18(4), e0284522. https://doi.org/10.1371/journal.pone.0284522
  • Reindl, K., & Palm, J. (2021). Installing PV: Barriers and enablers experienced by non-residential property owners. Renewable and Sustainable Energy Reviews, 141, 110829. https://doi.org/10.1016/j.rser.2021.110829
  • Rillig, M. C., Muller, L. A., & Lehmann, A. (2017). Soil aggregates as massively concurrent evolutionary incubators. The ISME Journal, 11(9), 1943–1948. https://doi.org/10.1038/ismej.2017.56
  • Robinson, D. A., Thomas, A., Reinsch, S., Lebron, I., Feeney, C. J., Maskell, L. C., Wood, C. M., Seaton, F. M., Emmett, B. A., & Cosby, B. J. (2022). Analytical modelling of soil porosity and bulk density across the soil organic matter and land-use continuum. Scientific Reports, 12(1), 7085. https://doi.org/10.1038/s41598-022-11099-7
  • Rodriguez-Pastor, D. A., Ildefonso-Sanchez, A. F., Soltero, V. M., Peralta, M. E., & Chacartegui, R. (2023). A new predictive model for the design and evaluation of bifacial photovoltaic plants under the influence of vegetation soils. Journal of Cleaner Production, 385, 135701. https://doi.org/10.1016/j.jclepro.2022.135701
  • Saha, P. K., Rana, K. S., Thakur, N., Parvez, B., Bhat, S. A., Ganguly, S., & Saha, D. (2022). Room temperature single-photon emission from InGaN quantum dot ordered arrays in GaN nanoneedles. Applied Physics Letters, 121(21), 211101. https://doi.org/10.1063/5.0111026
  • Sanjuan, J., Delgado, M. J., & Girard, L. (2020). Editorial: Microbial control of the nitrogen cycle. Frontiers in Microbiology, 11, 950. https://doi.org/10.3389/fmicb.2020.00950
  • Sarker, A., Deepo, D. M., Nandi, R., Rana, J., Islam, S., Rahman, S., Hossain, M. N., Islam, M., Baroi, A., & Kim, J.-E. (2020). A review of microplastics pollution in the soil and terrestrial ecosystems: A global and Bangladesh perspective. The Science of the Total Environment, 733, 139296. https://doi.org/10.1016/j.scitotenv.2020.139296
  • Schlesinger, W. H. (2022). Biogeochemical constraints on climate change mitigation through regenerative farming. Biogeochemistry, 161(1), 9–17. https://doi.org/10.1007/s10533-022-00942-8
  • Scott, L. C., Wilson, M. J., Esser, S. M., Lee, N. L., Wheeler, M. E., Aubee, A., & Aw, T. G. (2021). Assessing visitor use impact on antibiotic resistant bacteria and antibiotic resistance genes in soil and water environments of Rocky Mountain National Park. The Science of the Total Environment, 785, 147122. https://doi.org/10.1016/j.scitotenv.2021.147122
  • Sehler, R., Li, J., Reager, J., & Ye, H. (2019). Investigating relationship between soil moisture and precipitation globally using remote sensing observations. Journal of Contemporary Water Research & Education, 168(1), 106–118. https://doi.org/10.1111/j.1936-704X.2019.03324.x
  • Semeniuk, V. (2013). Predicted response of coastal wetlands to climate changes: A Western Australian model. Hydrobiologia, 708(1), 23–43. https://doi.org/10.1007/s10750-012-1159-0
  • Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Antunes, P. M. C. (2017). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. In P. de Voogt & F. A. Gunther (Eds.), Reviews of environmental contamination and toxicology volume 241, reviews of environmental contamination and toxicology (pp. 73–137). Springer International Publishing. https://doi.org/10.1007/398_2016_8
  • Shi, P., Li, Z., Li, P., Zhang, Y., & Li, B. (2021). Trade-offs among ecosystem services after vegetation restoration in China’s Loess Plateau. Natural Resources Research, 30(3), 2703–2713. https://doi.org/10.1007/s11053-021-09841-5
  • Sieber, P., Ericsson, N., Hammar, T., & Hansson, P.-A. (2022). Albedo impacts of current agricultural land use: Crop-specific albedo from MODIS data and inclusion in LCA of crop production. The Science of the Total Environment, 835, 155455. https://doi.org/10.1016/j.scitotenv.2022.155455
  • Simpson, M. J., & Simpson, A. J. (2017). NMR of soil organic matter. In J. C. Lindon, G. E. Tranter, & D. W. Koppenaal (Eds.), Encyclopedia of spectroscopy and spectrometry (3rd ed., pp. 170–174). Academic Press. https://doi.org/10.1016/B978-0-12-409547-2.12169-9
  • Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1), 7–31. https://doi.org/10.1016/j.still.2004.03.008
  • Sofo, A., Mininni, A. N., & Ricciuti, P. (2020). Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10(4), 456. https://doi.org/10.3390/agronomy10040456
  • Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L., Firestone, M. K., Foley, M. M., Hestrin, R., Hungate, B. A., Koch, B. J., Stone, B. W., Sullivan, M. B., Zablocki, O., & Pett-Ridge, J. (2022). Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nature Reviews. Microbiology, 20(7), 415–430. https://doi.org/10.1038/s41579-022-00695-z
  • Sun, A., Jiao, X.-Y., Chen, Q., Wu, A.-L., Zheng, Y., Lin, Y.-X., He, J.-Z., & Hu, H.-W. (2021). Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. Soil Biology and Biochemistry, 153, 108113. https://doi.org/10.1016/j.soilbio.2020.108113
  • Tahat, M., et al. (2020). Soil health and sustainable agriculture. Sustainability, 12(12), 4859.
  • Tahir, A. T., Kang, J., Bint-e-Mansoor, M., Ayub, J., Naureen, Z., & Hafeez, F. Y. (2022). Chapter 2 - Recent trends in characterization of endophytic microorganisms. In E. K. Radhakrishnan, A. Kumar, & R. Aswani (Eds.), Biocontrol mechanisms of endophytic microorganisms (pp. 31–53). Academic Press. https://doi.org/10.1016/B978-0-323-88478-5.00012-2
  • Tamilselvi, S. M., Thiyagarajan, C., Elumalai, V., & Uthandi, S. (2022). Chapter 6 - Microbial behavior, responses toward salinity stress, mechanism of microbe-mediated remediation for sustainable crop production. In G. Santoyo, A. Kumar, M. Aamir, & S. Uthandi (Eds.), Mitigation of plant abiotic stress by microorganisms (pp. 103–127). Academic Press. https://doi.org/10.1016/B978-0-323-90568-8.00006-7
  • Tautges, N. E., Chiartas, J. L., Gaudin, A. C. M., O’Geen, A. T., Herrera, I., & Scow, K. M. (2019). Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Global Change Biology, 25(11), 3753–3766. https://doi.org/10.1111/gcb.14762
  • Tawalbeh, M., Al-Othman, A., Kafiah, F., Abdelsalam, E., Almomani, F., & Alkasrawi, M. (2021). Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. The Science of the Total Environment, 759, 143528. https://doi.org/10.1016/j.scitotenv.2020.143528
  • Teng, Z., Zhong, M., Mao, Y., Li, E., Guo, M., & Wang, J.-X. (2022). A concentrated sunlight energy wireless transmission system for space solar energy harvest. Energy Conversion and Management, 261, 115524. https://doi.org/10.1016/j.enconman.2022.115524
  • Thangarajan, R., Bolan, N. S., Naidu, R., & Surapaneni, A. (2015). Effects of temperature and amendments on nitrogen mineralization in selected Australian soils. Environmental Science and Pollution Research International, 22(12), 8843–8854. https://doi.org/10.1007/s11356-013-2191-y
  • Topa, D., Cara, I. G., & Jităreanu, G. (2021). Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. CATENA, 199, 105102. https://doi.org/10.1016/j.catena.2020.105102
  • Ullah, A., Bano, A., & Khan, N. (2021). Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Frontiers in Sustainable Food Systems, 5, 618092. https://doi.org/10.3389/fsufs.2021.618092
  • Ullah, N., Ditta, A., Imtiaz, M., Li, X., Jan, A. U., Mehmood, S., Rizwan, M. S., & Rizwan, M. (2021). Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. Journal of Agronomy and Crop Science, 207(5), 783–802. https://doi.org/10.1111/jac.12502
  • Veldkamp, E., Schmidt, M., Powers, J. S., & Corre, M. D. (2020). Deforestation and reforestation impacts on soils in the tropics. Nature Reviews Earth & Environment, 1(11), 590–605. https://doi.org/10.1038/s43017-020-0091-5
  • Verheijen, F. G. A., Zhuravel, A., Silva, F. C., Amaro, A., Ben-Hur, M., & Keizer, J. J. (2019). The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, 347, 194–202. https://doi.org/10.1016/j.geoderma.2019.03.044
  • Wang, S., Cao, Y., Pietrzykowski, M., Zhou, W., Zhao, Z., & Bai, Z. (2020). Spatial distribution of soil bulk density and its relationship with slope and vegetation allocation model in rehabilitation of dumping site in loess open-pit mine area. Environmental Monitoring and Assessment, 192(11), 740. https://doi.org/10.1007/s10661-020-08692-6
  • Wang, C., Fu, B., Zhang, L., & Xu, Z. (2019). Soil moisture–plant interactions: An ecohydrological review. Journal of Soils and Sediments, 19(1), 1–9. https://doi.org/10.1007/s11368-018-2167-0
  • Wang, Y., Gao, M., Chen, H., Chen, Y., Wang, L., & Wang, R. (2023). Organic amendments promote saline-alkali soil desalinization and enhance maize growth. Frontiers in Plant Science, 14, 1177209. https://doi.org/10.3389/fpls.2023.1177209
  • Wang, W., Kravchenko, A. N., Johnson, T., Srinivasan, S., Ananyeva, K. A., Smucker, A. J. M., Rose, J. B., & Rivers, M. L. (2013). Intra-aggregate pore structures and Escherichia coli distribution by water flow within and movement out of soil macroaggregates. Vadose Zone Journal, 12(4), 1–14. https://doi.org/10.2136/vzj2013.01.0012
  • Wang, C., Morrissey, E. M., Mau, R. L., Hayer, M., Piñeiro, J., Mack, M. C., Marks, J. C., Bell, S. L., Miller, S. N., Schwartz, E., Dijkstra, P., Koch, B. J., Stone, B. W., Purcell, A. M., Blazewicz, S. J., Hofmockel, K. S., Pett-Ridge, J., & Hungate, B. A. (2021). The temperature sensitivity of soil: Microbial biodiversity, growth, and carbon mineralization. The ISME Journal, 15(9), 2738–2747. https://doi.org/10.1038/s41396-021-00959-1
  • Wang, Y., Zhang, Q., Majidzadeh, H., He, C., Shi, Q., Kong, S., Yang, Z., & Wang, J. (2021). Depletion of soil water-extractable organic matter with long-term coverage by impervious surfaces. Frontiers in Environmental Science, 9, 714311. https://doi.org/10.3389/fenvs.2021.714311
  • Wang, C., Zhao, C., Xu, Z., Wang, Y., & Peng, H. (2013). Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment. Journal of Arid Land, 5(2), 207–219. https://doi.org/10.1007/s40333-013-0151-5
  • Wei, Z., Gu, Y., Friman, V.-P., Kowalchuk, G. A., Xu, Y., Shen, Q., & Jousset, A. (2019). Initial soil microbiome composition and functioning predetermine future plant health. Science Advances, 5(9), eaaw0759. https://doi.org/10.1126/sciadv.aaw0759
  • Wells, M. L. (2013). 1 - Agricultural practices to reduce microbial contamination of nuts. In L. J. Harris (Ed.), Improving the safety and quality of nuts, Woodhead Publishing series in food science, technology and nutrition (pp. 3–21). Woodhead Publishing. https://doi.org/10.1533/9780857097484.1.3
  • Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., & Högy, P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development, 39(4), 1–20. https://doi.org/10.1007/s13593-019-0581-3
  • Whitford, W. G., & Duval, B. D. (2020). Chapter 9 - Decomposition and nutrient cycling. In W. G. Whitford & B. D. Duval (Eds.), Ecology of desert systems (2nd ed., pp. 265–315). Academic Press. https://doi.org/10.1016/B978-0-12-815055-9.00009-6
  • Wilson, R. M., Tfaily, M. M., Kolton, M., Johnston, E. R., Petro, C., Zalman, C. A., Hanson, P. J., Heyman, H. M., Kyle, J. E., Hoyt, D. W., Eder, E. K., Purvine, S. O., Kolka, R. K., Sebestyen, S. D., Griffiths, N. A., Schadt, C. W., Keller, J. K., Bridgham, S. D., Chanton, J. P., & Kostka, J. E. (2021). Soil metabolome response to whole-ecosystem warming at the spruce and peatland responses under changing environments experiment. Proceedings of the National Academy of Sciences, 118(25), e2004192118. https://doi.org/10.1073/pnas.2004192118
  • Winter, G., & Pereg, L. (2019). A review on the relation between soil and mycotoxins: Effect of aflatoxin on field, food and finance. European Journal of Soil Science, 70(4), 882–897. https://doi.org/10.1111/ejss.12813
  • Wu, S., Wei, Z., Li, X., Wang, H., & Guo, S. (2022). Variation characteristics of soil temperature, moisture, and heat flux in the understorey of evergreen broadleaf forest in South China. Theoretical and Applied Climatology, 150(3–4), 929–940. https://doi.org/10.1007/s00704-022-04206-1
  • Xiang, L., Harindintwali, J. D., Wang, F., Redmile-Gordon, M., Chang, S. X., Fu, Y., He, C., Muhoza, B., Brahushi, F., Bolan, N., Jiang, X., Ok, Y. S., Rinklebe, J., Schaeffer, A., Zhu, Y.-G., Tiedje, J. M., & Xing, B. (2022). Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environmental Science & Technology, 56(23), 16546–16566. https://doi.org/10.1021/acs.est.2c02976
  • Xu, Z., Zhang, T., Wang, S., & Wang, Z. (2020). Soil pH and C/N ratio determines spatial variations in soil microbial communities and enzymatic activities of the agricultural ecosystems in Northeast China: Jilin Province case. Applied Soil Ecology, 155, 103629. https://doi.org/10.1016/j.apsoil.2020.103629
  • Yadav, D. S., Jaiswal, B., Gautam, M., & Agrawal, M. (2020). Soil acidification and its impact on plants. In P. Singh, S. K. Singh, & S. M. Prasad (Eds.), Plant responses to soil pollution (pp. 1–26). Springer. https://doi.org/10.1007/978-981-15-4964-9_1
  • Yang, S., Shi, Z., Zhang, M., Li, Y., Gao, J., Wang, X., & Liu, D. (2021). Stoichiometry of carbon, nitrogen and phosphorus in shrub organs linked closely with mycorrhizal strategy in Northern China. Frontiers in Plant Science, 12, 687347. https://doi.org/10.3389/fpls.2021.687347
  • Yang, X., & Vanapalli, S. (2021). Chapter 7 - Modeling of unsaturated soils slopes considering the residual shear strength behavior. In P. Samui, S. Kumari, V. Makarov, & P. Kurup (Eds.), Modeling in geotechnical engineering (pp. 133–149). Academic Press. https://doi.org/10.1016/B978-0-12-821205-9.00001-0
  • Yang, H., Zhou, J., Feng, J., Zhai, S., Chen, W., Liu, J., & Bian, X. (2019). Chapter five - Ditch-buried straw return: A novel tillage practice combined with tillage rotation and deep ploughing in rice-wheat rotation systems. In D. L. Sparks (Ed.), Advances in agronomy (pp. 257–290). Academic Press. https://doi.org/10.1016/bs.agron.2018.11.004
  • Yang, J., Song, K., Tu, C., Li, L., Feng, Y., Li, R., … & Luo, Y. (2023). Distribution and weathering characteristics of microplastics in paddy soils following long-term mulching: A field study in Southwest China. Science of The Total Environment, 858, 159774.
  • Yu, G.-H., & Liu, S. (2022). Visualizing mineral-associated organic matters in long-term fertilization treated soils by NanoSIMS and SR-FTIR. Frontiers in Soil Science, 2, 847623. https://doi.org/10.3389/fsoil.2022.847623
  • Yudina, A., & Kuzyakov, Y. (2023). Dual nature of soil structure: The unity of aggregates and pores. Geoderma, 434, 116478. https://doi.org/10.1016/j.geoderma.2023.116478
  • Zapałowicz, Z., & Zeńczak, W. (2021). The possibilities to improve ship’s energy efficiency through the application of PV installation including cooled modules. Renewable and Sustainable Energy Reviews, 143, 110964. https://doi.org/10.1016/j.rser.2021.110964
  • Zhang, J., Chen, Y., Chai, M.-F., Shabala, S., Wang, K.-H., & Zhang, J.-L. (2023). Editorial: Adaptation mechanisms of grass and forage plants to stressful environments. Frontiers in Plant Science, 14, 1323841. https://doi.org/10.3389/fpls.2023.1323841
  • Zhang, D., Gong, C., Zhang, W., Zhang, H., Zhang, J., & Song, C. (2021). Labile carbon addition alters soil organic carbon mineralization but not its temperature sensitivity in a freshwater marsh of Northeast China. Applied Soil Ecology, 160, 103844. https://doi.org/10.1016/j.apsoil.2020.103844
  • Zhang, H., Phillip, F. O., Wu, L., Zhao, F., Yu, S., & Yu, K. (2022). Effects of temperature and nitrogen application on carbon and nitrogen accumulation and bacterial community composition in apple rhizosphere soil. Frontiers in Plant Science, 13, 859395. https://doi.org/10.3389/fpls.2022.859395
  • Zhang, Z., Teng, C., Zhou, K., Peng, C., & Chen, W. (2020). Degradation characteristics of dissolved organic matter in nanofiltration concentrated landfill leachate during electrocatalytic oxidation. Chemosphere, 255, 127055. https://doi.org/10.1016/j.chemosphere.2020.127055
  • Zhang, Y.-Y., Wu, W., & Liu, H. (2019). Factors affecting variations of soil pH in different horizons in hilly regions. PloS One, 14(6), e0218563. https://doi.org/10.1371/journal.pone.0218563
  • Zhao, Y., Wang, Y., & Zhang, X. (2021). Spatial and temporal variation in soil bulk density and saturated hydraulic conductivity and its influencing factors along a 500 km transect. CATENA, 207, 105592. https://doi.org/10.1016/j.catena.2021.105592
  • Zhou, K., Yang, S., & Li, S.-M. (2021). Naturally occurring prenylated chalcones from plants: structural diversity, distribution, activities and biosynthesis. Natural Product Reports, 38(12), 2236–2260. https://doi.org/10.1039/D0NP00083C