415
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Enzymatic protein hydrolysates of a residue from grape by-products industry for winemaking application: influence of the starting material and hydrolysis time

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2314231 | Received 16 Nov 2023, Accepted 30 Jan 2024, Published online: 14 Feb 2024

References

  • Adamson, N. J., & Reynolds, E. C. (1996). Characterization of casein phosphopeptides prepared alcalase: Determination of enzyme specificity. Enzyme and Microbial Technology, 19(3), 1–14. https://doi.org/10.1016/0141-0229(95)00232-4
  • Alvarez-Ossorio, C., Orive, M., Sanmartín, E., Alvarez-Sabatel, S., Labidi, J., Zufia, J., & Bald, C. (2022). Composition and techno-functional properties of grape seed flour protein extracts. ACS Food Science & Technology, 2(1), 125–135. https://doi.org/10.1021/acsfoodscitech.1c00367
  • AOAC. (1995). Official methods of analysis (16th ed.). Association of Official Analytical Chemists.
  • Bautista, J., Hernandez-Pinzon, I., Alaiz, M., Parrado, J., & Millan, F. (1996). Low molecular weight sunflower protein hydrolysate with low concentration in aromatic amino acids. Journal of Agricultural and Food Chemistry, 44(4), 967–971. https://doi.org/10.1021/jf940726c
  • Bordiga, M. (2018). Post-fermentation and distillation technology: Stabilization, aging, and spoilage. CRC Press.
  • Boulton, R. (2001). The copigmentation of anthocyanins and its role in the color of red wine: A critical review. American Journal of Enology and Viticulture, 52(2), 67–87. https://doi.org/10.5344/ajev.2001.52.2.67
  • Bučko, S., Katona, J., Petrović, L., Milinković, J., Spasojević, L., Mucić, N., & Miller, R. (2018). The influence of enzymatic hydrolysis on adsorption and interfacial dilatational properties of pumpkin (Cucurbita pepo) seed protein isolate. Food Biophysics. 13(3), 217–225. https://doi.org/10.1007/s11483-018-9528-5
  • Cejudo-Bastante, M. J., Oliva-Sobrado, M., González-Miret, M. L., & Heredia, F. J. (2022). Optimisation of the methodology for obtaining enzymatic protein hydrolysates from an industrial grape seed meal residue. Food Chemistry, 370, 131078. https://doi.org/10.1016/j.foodchem.2021.131078
  • Cejudo-Bastante, M. J., Rivero-Granados, F. J., & Heredia, F. J. (2017). Improving the color and aging aptitude of Syrah wines in warm climate by wood–grape mix maceration. European Food Research and Technology, 243(4), 575–582. https://doi.org/10.1007/s00217-016-2767-0
  • Cejudo-Bastante, M. J., Rodríguez-Morgado, B., Jara-Palacios, M. J., Rivas-Gonzalo, J. C., Parrado, J., & Heredia, F. J. (2016). Pre-fermentative addition of an enzymatic grape seed hydrolysate in warm climate winemaking. Effect on the differential colorimetry, copigmentation and polyphenolic profiles. Food Chemistry, 209, 348–357. https://doi.org/10.1016/j.foodchem.2016.04.092
  • Chamizo-González, F., Estévez, I. G., Gordillo, B., Manjón, E., Escribano-Bailón, M. T., Heredia, F. J., & González-Miret, M. L. (2023). First insights into the binding mechanism and colour effect of the interaction of grape seed 11S globulin with malvidin 3-O-glucoside by fluorescence spectroscopy, differential colorimetry and molecular modelling. Food Chemistry, 413, 135591. https://doi.org/10.1016/j.foodchem.2023.135591
  • Chamizo-González, F., Gordillo, B., & Heredia, F. J. (2021). Elucidation of the 3D structure of grape seed 7S globulin and its interaction with malvidin 3-glucoside: A molecular modeling approach. Food Chemistry, 347, 129014. https://doi.org/10.1016/j.foodchem.2021.129014
  • Chamizo-González, F., Heredia, F. J., Rodríguez-Pulido, F. J., González-Miret, M. L., & Gordillo, B. (2022). Proteomic and computational characterisation of 11S globulins from grape seed flour by-product and its interaction with malvidin 3-glucoside by molecular docking. Food Chemistry, 386, 132842. https://doi.org/10.1016/j.foodchem.2022.132842
  • CIE. (2004). Technical report colorimetry. Commission Internationale de l’Eclairage Central Bureau.
  • Coelho, M. S., & de las Mercedes Salas-Mellado, M. (2018). How extraction method affects the physicochemical and functional properties of chia proteins. LWT, 96, 26–33. https://doi.org/10.1016/j.lwt.2018.05.010
  • Creusot, N., & Gruppen, H. (2007). Hydrolysis of whey protein isolate with Bacillus licheniformis protease: Fractionation and identification of aggregating peptides. Journal of Agricultural and Food Chemistry, 55(22), 9241–9250. https://doi.org/10.1021/jf071584s
  • Dhanasekar, S., & Sathyanathan, R. (2023). Bioenergy potential of Chlorella vulgaris under the influence of different light conditions in a bubble column photobioreactor. Global J. Environ. Sci. Manag, 9(4), 789–804. https://doi.org/10.22034/gjesm.2023.04.09
  • Dwyer, K., Hosseinian, F., & Rod, M. (2014). The market potential of grape waste alternatives. Journal of Food Research, 3(2), 91–106. https://doi.org/10.5539/jfr.v3n2p91
  • Elias, R. J., Kellerby, S. S., & Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition, 48(5), 430–441. https://doi.org/10.1080/10408390701425615
  • Esfandi, R., Walters, M. E., & Tsopmo, A. (2019). Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon, 5(4), e01538. https://doi.org/10.1016/j.heliyon.2019.e01538
  • García-Lomillo, J., & González-SanJosé, M. L. (2017). Applications of wine pomace in the food industry: Approaches and functions. Comprehensive Reviews in Food Science and Food Safety, 16(1), 3–22. https://doi.org/10.1111/1541-4337.12238
  • Gazzola, D., Vincenzi, S., Marangon, M., Pasini, G., & Curioni, A. (2017). Grape seed extract: The first protein-based fining agent endogenous to grapes. Australian Journal of Grape and Wine Research. 23(2), 215–225. https://doi.org/10.1111/ajgw.12268
  • Ghribi, A. M., Sila, A., Przybylski, R., Nedjar-Arroume, N., Makhlouf, I., Blecker, C., Attia, H., Dhulster, P., Bougatef, A., & Besbes, S. (2015b). Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. J. Funct. Foods, 12, 516–525. https://doi.org/10.1016/j.jff.2014.12.011
  • Ghribi, A., Maklouf Gafsi, I., Sila, A., Blecker, C., Danthine, S., Attia, H., Bougatef, A., & Besbes, S. (2015a). Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate. Food Chemistry, 187, 322–330. https://doi.org/10.1016/J.FOODCHEM.2015.04.109
  • Gillespie, K. M., Chae, J. M., & Ainsworth, E. A. (2007). Rapid measurement of total antioxidant capacity in plants. Nature Protocols, 2(4), 867–870. https://doi.org/10.1038/nprot.2007.100
  • Gordillo, B., Cejudo-Bastante, M. J., Rodríguez-Pulido, F. J., Jara-Palacios, M. J., Ramírez-Pérez, P., González-Miret, M. L., & Heredia, F. J. (2014). Impact of adding white pomace to red grapes on the phenolic composition and color stability of syrah wines from a warm climate. Journal of Agricultural and Food Chemistry, 62(12), 2663–2671. https://doi.org/10.1021/jf405574x
  • Gordillo, B., Chamizo-González, F., González-Miret, M. L., & Heredia, F. J. (2021). Impact of alternative protein fining agents on the phenolic composition and color of Syrah red wines from warm climate. Food Chemistry, 342, 128297. https://doi.org/10.1016/j.foodchem.2020.128297
  • Górska-Warsewicz, H., Laskowski, W., Kulykovets, O., Kudlińska-Chylak, A., Czeczotko, M., & Rejman, K. (2018). Food products as sources of protein and amino acids—The case of Poland. Nutrients, 10(12), 1977. https://doi.org/10.3390/nu10121977
  • Guo, H., Kouzuma, Y., & Yonekura, M. (2009). Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chemistry. 113(1), 238–245. https://doi.org/10.1016/j.foodchem.2008.06.081
  • Heredia, F. J., Álvarez, C., González-Miret, M. L., & Ramírez, A. (2004). Registro General de la Propiedad Intelectural (SE-1052-04).
  • Kaewjumpol, G., Oruna-Concha, M. J., Niranjan, K., & Thawornchinsombut, S. (2018). The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction. Journal of the Science of Food and Agriculture, 98(9), 3290–3298. https://doi.org/10.1002/jsfa.8832
  • Kumar, M., Tomar, M., Punia, S., Dhakane-Lad, J., Dhumal, S., Changan, S., Senapathy, M., Berwal, M. K., Sampathrajan, V., Sayed, A. A. S., Chandran, D., Pandiselvam, R., Rais, N., Mahato, D. K., Udikeri, S. S., Satankar, V., Anitha, T., Singh, S., Amarowicz, R., & Kennedy, J. F. 2022. Plant-based proteins and their multifaceted industrial applications. LWT, 154, 112620. https://doi.org/10.1016/j.lwt.2021.112620
  • López-Pedrouso, M., Lorenzo, J. M., Bou, R., Vazquez, J. A., Valcarcel, J., Toldrà, M., & Franco, D. (2023). Valorisation of pork by-products to obtain antioxidant and antihypertensive peptides. Food Chemistry, 423, 136351. https://doi.org/10.1016/j.foodchem.2023.136351
  • Ma, Y., Zhao, H., & Zhao, X. (2019). Comparison of the effects of the alcalase- hydrolysates of caseinate, and of fish and bovine gelatins on the acidification and textural features of set-style skimmed yogurt- type products. Foods (Basel, Switzerland), 8(10), 501. https://doi.org/10.3390/foods8100501
  • Maier, T., Schieber, A., Kammerer, D. R., & Carle, R. (2009). Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chemistry. 112(3), 551–559. https://doi.org/10.1016/j.foodchem.2008.06.005
  • Marangon, M., Vincenzi, S., & Curioni, A. (2019). Wine fining with plant proteins. Molecules (Basel, Switzerland), 24(11), 2186. https://doi.org/10.3390/molecules24112186
  • Marcone, M. F., & Kakuda, Y. (1999). A comparative study of the functional properties of amaranth and soybean globulin isolates. Nahrung/Food, 43(6), 368–373.
  • Mira de Orduña, R. (2010). Climate change associated effects on grape and wine quality and production. Food Research International, 43(7), 1844–1855. https://doi.org/10.1016/j.foodres.2010.05.001
  • Mora-Garrido, A. B., Cejudo-Bastante, M. J., Heredia, F. J., & Escudero-Gilete, M. L. (2022). Revalorization of residues from the industrial exhaustion of grape by-products. LWT, 156, 113057. https://doi.org/10.1016/j.lwt.2021.113057
  • Nimalaratne, C., Lopes-Lutz, D., Schieber, A., & Wu, J. (2011). Free aromatic amino acids in egg yolk show antioxidant properties. Food Chemistry. 129(1), 155–161. https://doi.org/10.1016/j.foodchem.2011.04.058
  • Nunes, L. G. P., Reichert, T., & Machini, M. T. (2021). His-rich peptides, gly- and his-rich peptides: Functionally versatile compounds with potential multi-purpose applications. International Journal of Peptide Research and Therapeutics, 27(4), 2945–2963. https://doi.org/10.1007/s10989-021-10302-z
  • Ozdal, T., Capanoglu, E., & Altay, F. (2013). A review on protein–phenolic interactions and associated changes. Food Research International. 51(2), 954–970. https://doi.org/10.1016/j.foodres.2013.02.009
  • Parrado, J., Miramontes, E., Jover, M., Gutierrez, J. F., Collantes de Terán, L., & Bautista, J. (2006). Preparation of a rice bran enzymatic extract with potential use as functional food. Food Chemistry. 98(4), 742–748. https://doi.org/10.1016/j.foodchem.2005.07.016
  • Pojić, M., Mišan, A., & Tiwari, B. (2018). Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science and Technology. 75, 93–104. https://doi.org/10.1016/j.tifs.2018.03.010
  • Samimi, M., & Shahriari-Moghadam, M. (2023). The Lantana camara L. stem biomass as an inexpensive and efficient biosorbent for the adsorptive removal of malachite green from aquatic environments: Kinetics, equilibrium and thermodynamic studies. International Journal of Phytoremediation, 25(10), 1328–1336. https://doi.org/10.1080/15226514.2022.2156978
  • Soler-Rivas, C., Espín, J. C., & Wichers, H. J. (2000). An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochemical Analysis, 11(5), 330–338.
  • StatSoft Inc. (2007). STATISTICA (data analysis software system). Version 8. www.statsoft.com.
  • Suarez, L. M., Salcedo, J. G., & Zapata, J. E. (2022). Biological activity of Venezuelan variety cassava leaf hydrolyzates obtained by using different microbial enzymes. Information Technology, 33(2), 77–88. https://doi.org/10.4067/s0718-07642022000200077
  • Surówka, K., Żmudziński, D., & Surówka, J. (2004). Enzymic modification of extruded soy protein concentrates as a method of obtaining new functional food components. Trends in Food Science and Technology. 15(3–4), 153–160. https://doi.org/10.1016/j.tifs.2003.09.013
  • Tschiersch, C., Nikfardjam, M. P., Schmidt, O., & Schwack, W. (2010). Degree of hydrolysis of some vegetable proteins used as fining agents and its influence on polyphenol removal from red wine. European Food Research and Technology, 231(1), 65–74. https://doi.org/10.1007/s00217-010-1253-3
  • Tsugita, A., & Scheffler, J. J. (1982). A rapid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid. European Journal of Biochemistry, 124(3), 585–588. https://doi.org/10.1111/j.1432-1033.1982.tb06634.x
  • Ugolini, L., Cinti, S., Righetti, L., Stefan, A., Matteo, R., D’Avino, L., & Lazzeri, L. (2015). Production of an enzymatic protein hydrolyzate from defatted sunflower seed meal for potential application as a plant biostimulant. Industrial Crops and Products. 75, 15–23. https://doi.org/10.1016/j.indcrop.2014.11.026
  • Villanueva, A., Clemente, A., Bautista, J., & Millán, F. (1999). Production of an extensive sunflower protein hydrolysate by sequential hydrolysis with endo- and exo-proteases. Grasas y Aceites, 50(6), 472–476. https://doi.org/10.3989/gya.1999.v50.i6.697
  • Wasswa, J., Tang, J., Gu, X. H., & Yuan, X. Q. (2007). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chemistry. 104(4), 1698–1704. https://doi.org/10.1016/j.foodchem.2007.03.044
  • Zhao, G., Liu, Y., Zhao, M., Ren, J., & Yang, B. (2011). Enzymatic hydrolysis and their effects on conformational and functional properties of peanut protein isolate. Food Chemistry. 127(4), 1438–1443. https://doi.org/10.1016/j.foodchem.2011.01.046
  • Zou, Y., Wang, W., Li, Q., Chen, Y., Zheng, D., Zou, Y., Zhang, M., Zhao, T., Mao, G., Feng, W., Wu, X., & Yang, L. (2016). Physicochemical, functional properties and antioxidant activities of porcine cerebral hydrolysate peptides produced by ultrasound processing. Process Biochemistry. 51(3), 431–443. https://doi.org/10.1016/j.procbio.2015.12.011