792
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Modeling hydrological characteristics based on land use/land cover and climate changes in Muga watershed, Abay River Basin, Ethiopia

ORCID Icon &
Article: 2319935 | Received 16 Jun 2023, Accepted 13 Feb 2024, Published online: 23 Feb 2024

References

  • Abbaspour, K., Vaghefi, S. A., & Srinivasan, R. (2018). A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 International SWAT Conference. Multidisciplinary Digital Publishing Institute.
  • Abdo, K. S., Fiseha, B. M., Rientjes, T. H. M., Gieske, A. S. M., & Haile, A. T. (2009). Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana Basin, Ethiopia. Hydrological Processes, 23(26), 1–21. https://doi.org/10.1002/hyp.7363
  • Abdulahi, M. M., Hashim, H., & Teha, M. (2016). Rangeland degradation: Extent, impacts, and alternative restoration techniques in the rangelands of Ethiopia. Tropical and Subtropical Agroecosystems, 19(3), 305–3018. https://doi.org/10.56369/tsaes.2234
  • Abebe, G. (2017). Long-term climate data description in Ethiopia. Data in Brief, 14, 371–392. https://doi.org/10.1016/j.dib.2017.07.052
  • Abebe, T., & Gebremariam, B. (2019). Modeling runoff and sediment yield of Kesem dam watershed, Awash Basin, Ethiopia. SN Applied Sciences, 1(5), 446. https://doi.org/10.1007/s42452-019-0347-1
  • Afzal, M., & Ragab, R. (2020). Impact of the future climate and land use changes on the hydrology and water resources in South East England, UK. American Journal of Water Resources, 20, 218–231. https://doi.org/10.12691/ajwr-8-5-2
  • Alemseged, T. H., & Tom, R. (2015). Evaluation of regional climate model simulations of rainfall over the Upper Blue Nile basin. Atmospheric Research, 161–162, 57–64. https://doi.org/10.1016/j.atmosres.2015.03.013
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56 (vol. 300, p. D05109). FAO.
  • Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2012). Soil and water assessment tool input/output file documentation: version 2012 (vol. 436). Texas Water Resources Institute.
  • Arsanjani, J. J., Kainz, W., & Mousivand, A. J. (2011). Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: The case of Tehran. International Journal of Image and Data Fusion, 2(4), 329–345. https://doi.org/10.1080/19479832.2011.605397
  • Ayele, H. S., Li, M.-H., & Tung, C.-P. (2016). Assessing climate change impact on Gilgel Abbay and Gumara watershed hydrology, the Upper Blue Nile Basin, Ethiopia. Terrestrial, Atmospheric & Oceanic Sciences, 27,1005–1018. https://doi.org/10.3319/TAO.2016.07.30.01
  • Ayivi, F., & Jha, M. K. (2018). Estimation of water balance and water yield in the Reedy Fork-Buffalo Creek watershed in North Carolina using SWAT. International Soil and Water Conservation Research, 6(3), 203–213. https://doi.org/10.1016/j.iswcr.2018.03.007
  • Aylward, B. (2005). Land use, hydrological function and economic valuation, forests, water and people in the humid tropics: Past, present and future hydrological research for integrated land and water management. International Hydrology Series. Cambridge University Press, pp. 99–120.
  • BCEOM. (1998). Abbay river basin integrated development master plan project, phase 2, data collection and site-investigation survey and analysis, section II, sectoral studies.
  • Belay, T., & Mengistu, D. A. (2019). Land use and land cover dynamics and drivers in the Muga watershed, Upper Blue Nile basin, Ethiopia. Remote Sensing Applications: Society and Environment, 15, 100249. https://doi.org/10.1016/j.rsase.2019.100249
  • Belay, T., & Mengistu, D. A. (2021). Impacts of land use/land cover and climate changes on soil erosion in Muga watershed, Upper Blue Nile basin (Abay), Ethiopia. Ecological Processes, 10(1), 1–23. https://doi.org/10.1186/s13717-021-00339-9
  • Belihu, M., Tekleab, S., Abate, B., & Bewket, W. (2020). Hydrologic response to land use land cover change in the upper Gidabo watershed, Rift Valley Lakes basin, Ethiopia. HydroResearch, 3, 85–94. https://doi.org/10.1016/j.hydres.2020.07.001
  • Benegas, L., Ilstedt, U., Roupsard, O., Jones, J., & Malmer, A. (2014). Effects of trees on infiltrability and preferential flow in two contrasting agroecosystems in Central America. Agriculture, Ecosystems & Environment, 183, 185–196. https://doi.org/10.1016/j.agee.2013.10.027
  • Berhane, A., Hadgu, G., Worku, W., & Abrha, B. (2020). Trends in extreme temperature and rainfall indices in the semi-arid areas of Western Tigray, Ethiopia. Environmental Systems Research, 9(1), 1–20. https://doi.org/10.1186/s40068-020-00165-6
  • Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Meshesha, D. T., Adgo, E., Tsubo, M., Masunaga, T., Fenta, A. A., Sultan, D., Yibeltal, M., & Ebabu, K. (2019). Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. The Science of the Total Environment, 689, 347–365. https://doi.org/10.1016/j.scitotenv.2019.06.338
  • Betrie, G. D., Mohamed, Y. A., van Griensven, A., & Srinivasan, R. (2011). Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrology and Earth System Sciences, 15(3), 807–818. https://doi.org/10.5194/hess-15-807-2011
  • Bewket, W., & Sterk, G. (2005). Dynamics in land cover and its effect on stream flow in the Chemoga watershed, Blue Nile basin, Ethiopia. Hydrological Processes, 19(2), 445–458. https://doi.org/10.1002/hyp.5542
  • Bewket, W., & Teferi, E. (2009). Assessment of soil erosion hazard and prioritization for treatment at the watershed level: Case study in the Chemoga watershed, Blue Nile basin, Ethiopia. Land Degradation & Development, 20(6), 609–622. https://doi.org/10.1002/ldr.944
  • Birhanu, A., Masih, I., van der Zaag, P., Nyssen, J., & Cai, X. (2019). Impacts of land use and land cover changes on hydrology of the Gumara catchment, Ethiopia. Physics and Chemistry of the Earth, Parts A/B/C, 112, 165–174. https://doi.org/10.1016/j.pce.2019.01.006
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Chanapathi, T., & Thatikonda, S. (2020). Investigating the impact of climate and land-use land cover changes on hydrological predictions over the Krishna river basin under present and future scenarios. The Science of the Total Environment, 721, 137736. https://doi.org/10.1016/j.scitotenv.2020.137736
  • Chemura, A., Rwasoka, D., Mutanga, O., Dube, T., & Mushore, T. (2020). The impact of land-use/land cover changes on water balance of the heterogeneous Buzi sub-catchment, Zimbabwe. Remote Sensing Applications: Society and Environment, 18, 100292. https://doi.org/10.1016/j.rsase.2020.100292
  • Congalton, R. G., & Green, K. (2019). Assessing the accuracy of remotely sensed data: principles and practices. CRC press.
  • Cousino, L. K., Becker, R. H., & Zmijewski, K. A. (2015). Modeling the effects of climate change on water, sediment, and nutrient yields from the Maumee River watershed. Journal of Hydrology: Regional Studies, 4, 762–775. https://doi.org/10.1016/j.ejrh.2015.06.017
  • Demessie, E. T. (2015). Soil hydrological impacts and climatic controls of land use and land cover changes in the Upper Blue Nile (Abay) basin. CRC Press.
  • Demissie, F., Yeshitila, K., Kindu, M., & Schneider, T. (2017). Land use/Land cover changes and their causes in Libokemkem District of South Gonder, Ethiopia. Remote Sensing Applications: Society and Environment, 8, 224–230. https://doi.org/10.1016/j.rsase.2017.10.001
  • Dile, Y. T., Berndtsson, R., & Setegn, S. (2013). Hydrological response to climate change for Gilgel Abay River, in the Lake Tana basin-upper Blue Nile basin of Ethiopia. PLOS One. 8(10), e79296. https://doi.org/10.1371/journal.pone.0079296
  • Fan, M., & Shibata, H. (2015). Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan. Ecological Indicators, 50, 79–89. https://doi.org/10.1016/j.ecolind.2014.11.003
  • Ficklin, D. L., Luo, Y., Luedeling, E., & Zhang, M. (2009). Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology, 374(1–2), 16–29. https://doi.org/10.1016/j.jhydrol.2009.05.016
  • Foody, G. M., & Mathur, A. (2004). Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sensing of Environment, 93(1–2), 107–117. https://doi.org/10.1016/j.rse.2004.06.017
  • Gashaw, T., Tulu, T., Argaw, M., & Worqlul, A. W. (2018). Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. The Science of the Total Environment, 619-620, 1394–1408. https://doi.org/10.1016/j.scitotenv.2017.11.191
  • Gebre, S. L., & Ludwig, F. (2015). Hydrological response to climate change of the upper Blue Nile River Basin: Based on IPCC fifth assessment report (AR5). Journal of Climatology & Weather Forecasting, 3, 1–15.
  • Gebremicael, T. G., Mohamed, Y. A., Betrie, G. D., Van der Zaag, P., & Teferi, E. (2013). Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. Journal of Hydrology, 482, 57–68. https://doi.org/10.1016/j.jhydrol.2012.12.023
  • Gessesse, B., Bewket, W., & Bräuning, A. (2015). Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degradation & Development, 26(7), 711–724. https://doi.org/10.1002/ldr.2276
  • Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., & Zenebe, A. (2017). Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia. Modeling Earth Systems and Environment, 3(4), 1245–1262. https://doi.org/10.1007/s40808-017-0397-6
  • Gizaw, M. S., Biftu, G. F., Gan, T. Y., Moges, S. A., & Koivusalo, H. (2017). Potential impact of climate change on streamflow of major Ethiopian rivers. Climatic Change, 143(3–4), 371–383. https://doi.org/10.1007/s10584-017-2021-1
  • Glavan, M., & Pintar, M. (2012). Strengths, weaknesses, opportunities and threats of catchment modelling with Soil and Water Assessment Tool (SWAT) model. Water Resources Management and Modeling, 39–64.
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112. https://doi.org/10.1016/j.apgeog.2015.06.015
  • Hishe, S., Bewket, W., Nyssen, J., & Lyimo, J. (2020). Analysing past land use land cover change and CA-Markov-based future modelling in the Middle Suluh Valley, Northern Ethiopia. Geocarto International, 35(3), 225–255. https://doi.org/10.1080/10106049.2018.1516241
  • Hu, Y., & Hu, Y. (2019). Land cover changes and their driving mechanisms in Central Asia from 2001 to 2017 supported by Google Earth Engine. Remote Sensing, 11(5), 554. https://doi.org/10.3390/rs11050554
  • Hurni, H. (1998). Agroecologial belts of Ethiopia: Explanatory notes on three maps at a scale of 1:1,000,000. Soil conservation research program of Ethiopia. Addis Abeba.
  • Jin, K., Cornelis, W. M., Gabriels, D., Schiettecatte, W., De Neve, S., Lu, J., Buysse, T., Wu, H., Cai, D., Jin, J., & Harmann, R. (2008). Soil management effects on runoff and soil loss from field rainfall simulation. CATENA, 75(2), 191–199. https://doi.org/10.1016/j.catena.2008.06.002
  • Jury, M. R., & Funk, C. (2013). Climatic trends over Ethiopia: regional signals and drivers. International Journal of Climatology, 33(8), 1924–1935. https://doi.org/10.1002/joc.3560
  • Kim, U., & Kaluarachchi, J. J. (2009). Climate change impacts on water resources in the Upper Blue Nile River Basin, Ethiopia. Journal of the American Water Resources Association, 45(6), 1361–1378. https://doi.org/10.1111/j.1752-1688.2009.00369.x
  • Kiros, G., Shetty, A., & Nandagiri, L. (2016). Analysis of variability and trends in rainfall over northern Ethiopia. Arabian Journal of Geosciences, 9(6), 451. https://doi.org/10.1007/s12517-016-2471-1
  • Kurukulasuriya, P., & Rosenthal, S. (2013). Climate change and agriculture : A review of impacts and adaptations. World Bank.
  • Luo, J., Liu, Y., Zhang, s., & Liang, J. (2021). Extreme random forest method for machine fault classification. Measurement Science and Technology, 32(11), 114006. https://doi.org/10.1088/1361-6501/ac14f5
  • Magidi, J., Nhamo, L., Mpandeli, S., & Mabhaudhi, T. (2021). Application of the random forest classifier to map irrigated areas using Google Earth Engine. Remote Sensing, 13(5), 876. https://doi.org/10.3390/rs13050876
  • Marhaento, H., Booij, M. J., & Hoekstra, A. Y. (2018). Hydrological response to future land-use change and climate change in a tropical catchment. Hydrological Sciences Journal, 63(9), 1368–1385. https://doi.org/10.1080/02626667.2018.1511054
  • Mekonnen, D. F., Duan, Z., Rientjes, T., & Disse, M. (2018). Analysis of combined and isolated effects of land-use and land-cover changes and climate change on the upper Blue Nile River basin’s streamflow. Hydrology and Earth System Sciences, 22(12), 6187–6207. https://doi.org/10.5194/hess-22-6187-2018
  • Melaku, N. D., Renschler, C. S., Holzmann, H., Strohmeier, S., Bayu, W., Zucca, C., Ziadat, F., & Klik, A. (2018). Prediction of soil and water conservation structure impacts on runoff and erosion processes using SWAT model in the northern Ethiopian highlands. Journal of Soils and Sediments, 18(4), 1743–1755. https://doi.org/10.1007/s11368-017-1901-3
  • Mengistu, D., Bewket, W., Dosio, A., & Panitz, H.-J. (2021). Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. Journal of Hydrology, 592, 125614. https://doi.org/10.1016/j.jhydrol.2020.125614
  • Mondal, M., Sharma, N., Garg, P. K., & Kappas, M. (2016). Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. The Egyptian Journal of Remote Sensing and Space Science, 19(2), 259–272. https://doi.org/10.1016/j.ejrs.2016.08.001
  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900.
  • Nkonya, E., Mirzabaev, A., & Braun, J. V. (2016). Economics of land degradation and improvement–a global assessment for sustainable development. Springer Nature.
  • NMA. (2007). Climate change national adaptation programme of action (NAPA) of Ethiopia., Addis Ababa.
  • Pan, S., Liu, D., Wang, Z., Zhao, Q., Zou, H., Hou, Y., Liu, P., & Xiong, L. (2017). Runoff Responses to Climate and Land Use/Cover Changes under Future Scenarios. Water, 9(7), 475. https://doi.org/10.3390/w9070475
  • Perry, M., & Hollis, D. (2005). The development of a new set of long-term climate averages for the UK. International Journal of Climatology, 25(8), 1023–1039. https://doi.org/10.1002/joc.1160
  • Pontius, R. G. (2002). Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogrammetric Engineering and Remote Sensing, 68, 1041.
  • Richards, J. A., & Richards, J. A. (1999). Remote sensing digital image analysis. Springer.
  • Ridwansyah, I., Yulianti, M., Onodera, S.-I., Shimizu, Y., Wibowo, H., Fakhrudin, M., & Apip, A. (2020). The impact of land use and climate change on surface runoff and groundwater in Cimanuk watershed, Indonesia. Limnology, 21(3), 487–498. https://doi.org/10.1007/s10201-020-00629-9
  • Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J. C., Bodner, G., Borga, M., Chaplot, V., Gallart, F., Glatzel, G., Hall, J., Holden, J., Holko, L., Horn, R., Kiss, A., Kohnová, S., Leitinger, G., Lennartz, B., Parajka, J., Perdigão, R., … Blöschl, G. (2017). Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resources Research, 53(7), 5209–5219. https://doi.org/10.1002/2017WR020723
  • Safriel, U. N. (2007). The Assessment of Global Trends in Land Degradation. In M. V. K. Sivakumar, N. Ndiang’ui (Eds.), Climate and Land Degradation. Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72438-4_1
  • Santos, D., Cardoso-Fernandes, J., Lima, A., Müller, A., Brönner, M., & Teodoro, A. C. (2022). Spectral analysis to improve inputs to random forest and other boosted ensemble tree-based algorithms for detecting NYF Pegmatites in Tysfjord, Norway. Remote Sensing, 14(15), 3532. https://doi.org/10.3390/rs14153532
  • Schneiderman, E. M., Steenhuis, T. S., Thongs, D. J., Easton, Z. M., Zion, M. S., Neal, A. L., Mendoza, G. F., & Todd Walter, M. (2007). Incorporating variable source area hydrology into a curve-number-based watershed model. Hydrological Processes, 21(25), 3420–3430. https://doi.org/10.1002/hyp.6556
  • SCS. (1972). National engineering handbook: Section 4: Hydrology. USDA Washington.
  • Setegn, S., Melesse, A. M., Rayner, D., & Dargahi, B. (2014). Climate change impact on water resources and adaptation strategies in the Blue Nile River Basin (pp. 389–404). Nile River Basin, Springer.
  • Sharpley, A. N., & Williams, J. R. (1990). EPIC-erosion/productivity impact calculator. I: Model documentation. II: User manual. Technical Bulletin-United States Department of Agriculture.
  • Shawul, A. A., Chakma, S., & Melesse, A. M. (2019). The response of water balance components to land cover change based on hydrologic modeling and partial least squares regression (PLSR) analysis in the Upper Awash Basin. Journal of Hydrology: Regional Studies, 26, 100640. https://doi.org/10.1016/j.ejrh.2019.100640
  • Shrestha, B., Cochrane, T. A., Caruso, B. S., & Arias, M. E. (2018). Land use change uncertainty impacts on streamflow and sediment projections in areas undergoing rapid development: A case study in the Mekong Basin. Land Degradation & Development, 29(3), 835–848. https://doi.org/10.1002/ldr.2831
  • Simane, B., Zaitchik, B. F., & Ozdogan, M. (2013). Agroecosystem analysis of the Choke Mountain watersheds, Ethiopia. Sustainability, 5(2), 592–616. https://doi.org/10.3390/su5020592
  • Singh, S. K., Mustak, S., Srivastava, P. K., Szabó, S., & Islam, T. (2015). Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environmental Processes, 2(1), 61–78. https://doi.org/10.1007/s40710-015-0062-x
  • Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge university press Cambridge.
  • Swain, S. S., Mishra, A., Sahoo, B., & Chatterjee, C. (2020). Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach. Journal of Hydrology, 590, 125260. https://doi.org/10.1016/j.jhydrol.2020.125260
  • Talib, A., & Randhir, T. O. (2017). Climate change and land use impacts on hydrologic processes of watershed systems. Journal of Water and Climate Change, 8(3), 363–374. https://doi.org/10.2166/wcc.2017.064
  • Taye, M. T., Willems, P., & Block, P. (2015). Implications of climate change on hydrological extremes in the Blue Nile basin: A review. Journal of Hydrology: Regional Studies, 4, 280–293. https://doi.org/10.1016/j.ejrh.2015.07.001
  • Teferi, E., Bewket, W., Uhlenbrook, S., & Wenninger, J. (2013). Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia: Spatially explicit statistical modeling of systematic transitions. Agriculture, Ecosystems & Environment, 165, 98–117. https://doi.org/10.1016/j.agee.2012.11.007
  • Teklay, A., Dile, Y. T., Asfaw, D. H., Bayabil, H. K., & Sisay, K. (2021). Impacts of climate and land use change on hydrological response in Gumara Watershed, Ethiopia. Ecohydrology & Hydrobiology, 21(2), 315–332. https://doi.org/10.1016/j.ecohyd.2020.12.001
  • Tekleab, S., Mohamed, Y., & Uhlenbrook, S. (2013). Hydro-climatic trends in the Abay/Upper Blue Nile basin, Ethiopia. Physics and Chemistry of the Earth, Parts A/B/C, 61–62, 32–42. https://doi.org/10.1016/j.pce.2013.04.017
  • Tekleab, S., Mohamed, Y., Uhlenbrook, S., & Wenninger, J. (2014). Hydrologic responses to land cover change: The case of Jedeb mesoscale catchment, Abay/Upper Blue Nile basin, Ethiopia. Hydrological Processes, 28(20), 5149–5161. https://doi.org/10.1002/hyp.9998
  • Teklesadik, A. D., Alemayehu, T., Van Griensven, A., Kumar, R., Liersch, S., Eisner, S., Tecklenburg, J., Ewunte, S., & Wang, X. (2017). Inter-model comparison of hydrological impacts of climate change on the Upper Blue Nile basin using ensemble of hydrological models and global climate models. Climatic Change, 141(3), 517–532. https://doi.org/10.1007/s10584-017-1913-4
  • Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 456–457, 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052
  • van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1–2), 5–31. https://doi.org/10.1007/s10584-011-0148-z
  • Woldesenbet, T. A., Elagib, N. A., Ribbe, L., & Heinrich, J. (2017). Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. The Science of the Total Environment, 575, 724–741. https://doi.org/10.1016/j.scitotenv.2016.09.124
  • Woldesenbet, T. A., Elagib, N. A., Ribbe, L., & Heinrich, J. (2018). Catchment response to climate and land use changes in the Upper Blue Nile sub-basins, Ethiopia. The Science of the Total Environment, 644, 193–206. https://doi.org/10.1016/j.scitotenv.2018.06.198
  • Worku, G., Teferi, E., Bantider, A., Dile, Y. T., & Taye, M. T. (2018). Evaluation of regional climate models performance in simulating rainfall climatology of Jemma sub-basin, Upper Blue Nile Basin, Ethiopia. Dynamics of Atmospheres and Oceans, 83, 53–63. https://doi.org/10.1016/j.dynatmoce.2018.06.002
  • Worqlul, A. W., Ayana, E. K., Yen, H., Jeong, J., MacAlister, C., Taylor, R., Gerik, T. J., & Steenhuis, T. S. (2018). Evaluating hydrologic responses to soil characteristics using SWAT model in a paired-watersheds in the Upper Blue Nile Basin. Catena, 163, 332–341. https://doi.org/10.1016/j.catena.2017.12.040
  • Xiong, J., Thenkabail, P. S., Tilton, J. C., Gumma, M. K., Teluguntla, P., Oliphant, A., Congalton, R. G., Yadav, K., & Gorelick, N. (2017). Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sensing, 9(10), 1065. https://doi.org/10.3390/rs9101065
  • Yan, R., Huang, J., Wang, Y., Gao, J., & Qi, L. (2016). Modeling the combined impact of future climate and land use changes on streamflow of Xinjiang Basin, China. Hydrology Research, 47(2), 356–372. https://doi.org/10.2166/nh.2015.206