437
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of dopamine and progesterone on the physiological and molecular responses of tomato seedlings to drought and salt stress

ORCID Icon, &
Article: 2321308 | Received 25 Dec 2023, Accepted 16 Feb 2024, Published online: 23 Feb 2024

References

  • Abdelaal, K., Alsubeie, M. S., Hafez, Y., Emeran, A., Moghanm, F., Okasha, S., Omara, R., Basahi, M. A., Darwish, D. B. E., Ibrahim, M. F. M., El-Yazied, A. A., Rashwan, E. A., Elkelish, A., Mady, M. A., & Ibraheem, F. (2022). Physiological and biochemical changes in vegetable and field crops under drought, salinity and weeds stresses: Control strategies and management. Agriculture, 12(12), 1. https://doi.org/10.3390/agriculture12122084
  • Ahammed, G. J., & Li, X. (2023). Dopamine-induced abiotic stress tolerance in horticultural plants. Scientia Horticulturae, 307, 111506. https://doi.org/10.1016/j.scienta.2022.111506
  • Ahammed, G. J., Wang, Y., Mao, Q., Wu, M., Yan, Y., Ren, J., Wang, X., Liu, A., & Chen, S. (2020). Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber. Environmental Pollution, 259, 113957. https://doi.org/10.1016/j.envpol.2020.113957
  • Ahmad, A., Khan, W. U., Shah, A. A., Yasin, N. A., Ali, A., Rizwan, M., & Ali, S. (2021). Dopamine alleviates hydrocarbon stress in Brassica oleracea through modulation of physio-biochemical attributes and antioxidant defense systems. Chemosphere, 270, 128633. https://doi.org/10.1016/j.chemosphere.2020.128633
  • Ahmad, I., Zhu, G., Zhou, G., Younas, M. U., Suliman, M. S. E., Liu, J., Zhu, Y. M., & Salih, E. G. I. (2023). Integrated approaches for increasing plant yield under salt stress. Frontiers in Plant Science, 14, 1215343. https://doi.org/10.3389/fpls.2023.1215343
  • Akcay, U. C., & Okudan, N. (2023). Exogenous serotonin improves drought and salt tolerance in tomato seedlings. Plant Growth Regulation, 101(1), 239–12. https://doi.org/10.1007/s10725-023-01016-x
  • Ali, A. F., Hatamnia, A. A., Malekzadeh, P., Sayyari, M., & Aghdam, M. S. (2023). Exogenous dopamine ameliorates chilling injury in banana fruits by enhancing endogenous dopamine and glycine betaine accumulation and promoting ROS scavenging system activity. Postharvest Biology and Technology, 205, 112521. https://doi.org/10.1016/j.postharvbio.2023.112521
  • Angon, P. B., Tahjib-Ul-Arif, M., Samin, S. I., Habiba, U., Hossain, M. A., & Brestic, M. (2022). How do plants respond to combined drought and salinity stress? A systematic review. Plants, 11(21), 2884. https://doi.org/10.3390/plants11212884
  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060
  • Battilani, A., Prieto, M. H., Argerich, C., Campillo, C., & Cantore, V. (2012). Tomato. In P. Steduto, T. C. Hsiao, E. Fereres, & D. Raes (Eds.), Crop yield response to water, ırrigation and drainage paper no. 66 (pp. 192–198). FAO.
  • Cao, Y., Du, P., Yin, B., Zhou, S., Li, Z., Zhang, X., Xu, J., & Liang, B. (2023). Melatonin and dopamine enhance waterlogging tolerance by modulating ROS scavenging, nitrogen uptake, and the rhizosphere microbial community in Malus hupehensis. Plant and Soil, 483(1–2), 475–493. https://doi.org/10.1007/s11104-022-05759-w
  • Chakraborty, S., Singh, A., & Roychoudhury, A. (2022). Extensive cross-talk among stress-regulated protective metabolites, biogenic-amines and phytohormone-signalling, co-ordinated by dopamine-mediated seed-priming, governs tolerance against fluoride stress in rice. Plant Cell Reports, 41(12), 2261–2278. https://doi.org/10.1007/s00299-022-02919-1
  • Chen, H., Zhou, S., Li, X., & Yang, H. (2022). Exogenous progesterone alleviates chilling injury by upregulating IbAOX1 to mediate redox homeostasis and proline accumulation in postharvest sweetpotato tuberous root. Postharvest Biology and Technology, 183, 111738. https://doi.org/10.1016/j.postharvbio.2021.111738
  • Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., & Yurin, V. (2014). Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65(5), 1259–1270. https://doi.org/10.1093/jxb/eru004
  • Du, P., Yin, B., Zhou, S., Li, Z., Zhang, X., Cao, Y., Han, R., Shi, C., Liang, B., & Xu, J. (2022). Melatonin and dopamine mediate the regulation of nitrogen uptake and metabolism at low ammonium levels in Malus hupehensis. Plant Physiology and Biochemistry, 171, 182–190. https://doi.org/10.1016/j.plaphy.2022.01.004
  • Erdal, S. (2012a). Exogenous mammalian sex hormones mitigate inhibition in growth by enhancing antioxidant activity and synthesis reactions in germinating maize seeds under salt stress. Journal of the Science of Food and Agriculture, 92(4), 839–843. https://doi.org/10.1002/jsfa.4655
  • Erdal, S. (2012b). Alleviation of salt stress in wheat seedlings by mammalian sex hormones. Journal of the Science of Food and Agriculture, 92(7), 1411–1416. https://doi.org/10.1002/jsfa.4716
  • Erdal, S., & Dumlupinar, R. (2011). Mammalian sex hormones stimulate antioxidant system and enhance growth of chickpea plants. Acta Physiologiae Plantarum, 33(3), 1011–1017. https://doi.org/10.1007/s11738-010-0634-3
  • Erdal, S., & Genisel, M. (2016). The property of progesterone to mitigate cold stress in maize is linked to a modulation of the mitochondrial respiratory pathway. Theoretical and Experimental Plant Physiology, 28(4), 385–393. https://doi.org/10.1007/s40626-016-0076-4
  • Farouk, S., El-Hady, M. A. M. A., El-Sherpiny, M. A., Hassan, M. M., Alamer, K. H., Al-Robai, S. A., Ali, E. F., & El-Bauome, H. A. (2023). Effect of dopamine on growth, some biochemical attributes, and the yield of crisphead lettuce under nitrogen deficiency. Horticulturae, 9(8), 945. https://doi.org/10.3390/horticulturae9080945
  • Filek, M., Rudolphi-Skórska, E., Sieprawska, A., Kvasnica, M., & Janeczko, A. (2017). Regulation of the membrane structure by brassinosteroids and progesterone in winter wheat seedlings exposed to low temperature. Steroids, 128, 37–45. https://doi.org/10.1016/j.steroids.2017.10.002
  • Gao, T., Wang, Y., Liu, Y., Ma, M., Li, X., Zhang, D., Ding, K., Li, C., Zou, Y., & Ma, F. (2021). Overexpression of tyrosine decarboxylase (MdTYDC) enhances drought tolerance in Malus domestica. Scientia Horticulturae, 289, 110425. https://doi.org/10.1016/j.scienta.2021.110425
  • Genisel, M., Turk, H., & Erdal, S. (2013). Exogenous progesterone application protects chickpea seedlings against chilling-induced oxidative stress. Acta Physiologiae Plantarum, 35(1), 241–251. https://doi.org/10.1007/s11738-012-1070-3
  • Gomes, B. R., Soares, R. C. S., Santos, W. D., Marchiosi, R., Soares, A. R., & Filho, O. F. (2014). The effects of dopamine on antioxidant enzymes activities and reactive oxygen species levels in soybean roots. Plant Signaling & Behavior, 9(12), e977704. https://doi.org/10.4161/15592324.2014.977704
  • Guidotti, B. B., Gomes, B. R., Siqueira-Soares, R. d C., Soares, A. R., & Ferrarese-Filho, O. (2013). The effects of dopamine on root growth and enzyme activity in soybean seedlings. Plant Signaling & Behavior. 8(9), e25477. https://doi.org/10.4161/psb.25477
  • Haj-Amor, Z., Araya, T., Kim, D. G., Bouri, S., Lee, J., Ghiloufi, W., Yang, Y., Kang, H., Jhariya, M. K., Banerjee, A., & Lal, R. (2022). Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. The Science of the Total Environment, 843, 156946. https://doi.org/10.1016/j.scitotenv.2022.156946
  • Hao, J., Li, X., Xu, G., Huo, Y., & Yang, H. (2019). Exogenous progesterone treatment alleviates chilling injury in postharvest banana fruit associated with induction of alternative oxidase and antioxidant defense. Food Chemistry, 286, 329–337. https://doi.org/10.1016/j.foodchem.2019.02.027
  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular - California Agricultural Experiment Station, 347, 1–32.
  • Howe, M. W., & Dombeck, D. A. (2016). Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature, 535(7613), 505–510. https://doi.org/10.1038/nature18942
  • Iino, M., Nomura, T., Tamaki, Y., Yamada, Y., Yoneyama, K., Takeuchi, Y., Mori, M., Asami, T., Nakano, T., & Yokota, T. (2007). Progesterone: Its occurrence in plants and involvement in plant growth. Phytochemistry, 68(12), 1664–1673. https://doi.org/10.1016/j.phytochem.2007.04.002
  • Iqbal, N., Khan, N. A., Ferrante, A., Trivellini, A., Francini, A., & Khan, M. I. R. (2017). Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Frontiers in Plant Science, 8, 475. https://doi.org/10.3389/fpls.2017.00475
  • Janeczko, A., & Filek, W. (2002). Stimulation of generative development in partly vernalized winter wheat by animal sex hormones. Acta Physiologiae Plantarum, 24(3), 291–295. https://doi.org/10.1007/s11738-002-0054-0
  • Janeczko, A., Filek, W., Biesaga-Kościelniak, J., Marcińska, I., & Janeczko, Z. (2003). The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: Comparison with the effect of 24-epibrassinolide. Plant Cell, Tissue and Organ Culture, 72(2), 147–151. https://doi.org/10.1023/A:1022291718398
  • Janeczko, A., Oklešťková, J., Siwek, A., Dziurka, M., Pociecha, E., Kocurek, M., & Novák, O. (2013). Endogenous progesterone and its cellular binding sites in wheat exposed to drought stress. The Journal of Steroid Biochemistry and Molecular Biology, 138, 384–394. https://doi.org/10.1016/j.jsbmb.2013.07.014
  • Janeczko, A., Pociecha, E., Dziurka, M., Jurczyk, B., Libik-Konieczny, M., Oklestkova, J., Novák, O., Pilarska, M., Filek, M., Rudolphi-Skórska, E., Sadura, I., & Siwek, A. (2019). Changes in content of steroid regulators during cold hardening of winter wheat - Steroid physiological/biochemical activity and impact on frost tolerance. Plant Physiology and Biochemistry: PPB, 139, 215–228. https://doi.org/10.1016/j.plaphy.2019.03.020
  • Jiao, X., Li, Y., Zhang, X., Liu, C., Liang, W., Li, C., Ma, F., & Li, C. (2019). Exogenous dopamine application promotes alkali tolerance of apple seedlings. Plants, 8(12), 580. https://doi.org/10.3390/plants8120580
  • Khedr, E. H., & Khedr, N. (2023). Optimization of postharvest progesterone treatment to alleviate chilling injury in mango fruit, maintaining intracellular energy, cell wall stability, and antioxidant activity. Postharvest Biology and Technology, 206, 112572. https://doi.org/10.1016/j.postharvbio.2023.112572
  • Kopecká, R., Kameniarová, M., Černý, M., Brzobohatý, B., & Novák, J. (2023). Abiotic stress in crop production. International Journal of Molecular Sciences, 24(7), 6603. https://doi.org/10.3390/ijms24076603
  • Lan, G. P., Jiao, C. J., Wang, G. Q., Sun, Y. H., & Yan, S. (2020). Effects of dopamine on growth, carbon metabolism, and nitrogen metabolism in cucumber under nitrate stress. Scientia Horticulturae. 260, 108790. https://doi.org/10.1016/j.scienta.2019.108790
  • Li, Y. (2009). Physiological responses of tomato seedlings (Lycopersicon esculentum) to salt stress. Mod Appl Sci, 3(3), 171–176.
  • Li, H., Chen, L., Chen, H., Xue, R., Wang, Y., & Song, J. (2022). The role of plant progesterone in regulating growth, development, and biotic/abiotic stress responses. International Journal of Molecular Sciences, 23(18), 10945. https://doi.org/10.3390/ijms231810945
  • Li, C., Sun, X., Chang, C., Jia, D., Wei, Z., Li, C., & Ma, F. (2015). Dopamine alleviates salt-induced stress in Malus hupehensis. Physiologia Plantarum, 153(4), 584–602. https://doi.org/10.1111/ppl.12264
  • Liang, B.,Li, C.,Ma, C.,Wei, Z.,Wang, Q.,Huang, D.,Chen, Qi.,Li, C.,Ma, F. (2017). Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis. Plant Physiology and Biochemistry, 119, 346–359. 10.1016/j.plaphy.2017.09.012
  • Ma, Y., Freitas, H., & Dias, M. C. (2022). Strategies and prospects for biostimulants to alleviate abiotic stress in plants. Frontiers in Plant Science, 13, 1024243. https://doi.org/10.3389/fpls.2022.1024243
  • McAtee, P., Karim, S., Schaffer, R. J., & David, K. (2013). A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Frontiers in Plant Science, 4, 79. https://doi.org/10.3389/fpls.2013.00079
  • Muhammad, M., Waheed, A., Wahab, A., Majeed, M., Nazim, M., Liu, Y. H., Li, L., & Li, W. J. (2024). Soil salinity and drought tolerance: An evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress, 11, 100319. https://doi.org/10.1016/j.stress.2023.100319
  • Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 461(3), 205–210. https://doi.org/10.1016/s0014-5793(99)01451-9
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
  • Protacio, C. M., Dai, Y. R., Lewis, E. F., & Flores, H. E. (1992). Growth stimulation by catecholamines in plant tissue/organ cultures. Plant Physiology, 98(1), 89–96. https://doi.org/10.1104/pp.98.1.89
  • Riyazuddin, R., Verma, R., Singh, K., Nisha, N., Keisham, M., Bhati, K. K., Kim, S. T., & Gupta, R. (2020). Ethylene: A master regulator of salinity stress tolerance in plants. Biomolecules, 10(6), 959. https://doi.org/10.3390/biom10060959
  • Roshchina, V. V. (2022). Biogenic amines in plant cell at norma and stress: probes for dopamine and histamine. In T. Aftab & M. Naeem (Eds.), Emerging plant growth regulators in agriculture (pp. 357–376). Academic Press.
  • Rudolph, L. M., Cornil, C. A., Mittelman-Smith, M. A., Rainville, J. R., Remage-Healey, L., Sinchak, K., & Micevych, P. E. (2016). Actions of steroids: New neurotransmitters. The Journal of Neuroscience, 36(45), 11449–11458. https://doi.org/10.1523/JNEUROSCI.2473-16.2016
  • Sato, H.,Suzuki, T.,Takahashi, F.,Shinozaki, K., &Yamaguchi-Shinozaki, K. (2019). NF-YB2 and NF-YB3 Have Functionally Diverged and Differentially Induce Drought and Heat Stress-Specific Genes. Plant Physiology, 180(3), 1677–1690. 10.1104/pp.19.00391
  • Shelden, M. C., & Munns, R. (2023). Crop root system plasticity for improved yields in saline soils. Frontiers in Plant Science, 14, 1120583. https://doi.org/10.3389/fpls.2023.1120583
  • Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53(2), 258–260. https://doi.org/10.1104/pp.53.2.258
  • Su, X., Wu, S., Yang, L., Xue, R., Li, H., Wang, Y., & Zhao, H. (2014). Exogenous progesterone alleviates heat and high light stress induced inactivation of photosystem II in wheat by enhancing antioxidant defense and D1 protein stability. Plant Growth Regulation, 74(3), 311–318. https://doi.org/10.1007/s10725-014-9920-1
  • Wang, Y., Chen, Q., Zheng, J., Zhang, Z., Gao, T., Li, C., & Ma, F. (2021). Overexpression of the tyrosine decarboxylase gene MdTyDC in apple enhances long-term moderate drought tolerance and WUE. Plant Science, 313, 111064. https://doi.org/10.1016/j.plantsci.2021.111064
  • Wang, Y., Gao, T., Zhang, Z., Yuan, X., Chen, Q., Zheng, J., Chen, S., Ma, F., & Li, C. (2020). Overexpression of the tyrosine decarboxylase gene MdTyDC confers salt tolerance in apple. Environmental and Experimental Botany, 180, 104244. https://doi.org/10.1016/j.envexpbot.2020.104244
  • Wang, W., Yang, Y., Ma, X., He, Y., Ren, Q., Huang, Y., Wang, J., Xue, Y., Yang, R., Guo, Y., Sun, J., Yang, L., & Sun, Z. (2023). New insight into the function of dopamine (DA) during Cd stress in duckweed (Lemna turionifera 5511). Plants, 12(10), 1996. https://doi.org/10.3390/plants12101996
  • Waqas, M. A., Kaya, C., Riaz, A., Farooq, M., Nawaz, I., Wilkes, A., & Li, Y. (2019). Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Frontiers in Plant Science, 10, 1336. https://doi.org/10.3389/fpls.2019.01336
  • Xue, R. L., Wang, S. Q., Xu, H. L., Zhang, P. J., Li, H., & Zhao, H. J. (2017). Progesterone increases photochemic efficiency of photosystem II in wheat under heat stress by facilitating D1 protein phosphorylation. Photosynthetica, 55(4), 664–670. https://doi.org/10.1007/s11099-016-0681-0
  • Yadav, S., Modi, P. D. A., Vijapura, A., Patel, D., & Patel, M. (2020). Effect of abiotic stress on crops. Sustainable Crop Production, 3, 3–24.
  • Yogendra, K. N., Dhokane, D., Kushalappa, A. C., Sarmiento, F., Rodriguez, E., & Mosquera, T. (2016). StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight. Plant Science, 256, 208–216. https://doi.org/10.1016/j.plantsci.2016.12.014
  • Zhang, Z., Tang, Z., Jing, G., Gao, S., Liu, C., Ai, S., Liu, Y., Liu, Q., Li, C., & Ma, F. (2023). Dopamine confers cadmium tolerance in apples by improving growth, reducing reactive oxygen species, and changing secondary metabolite levels. Environmental and Experimental Botany. 208, 105264. https://doi.org/10.1016/j.envexpbot.2023.105264
  • Zhang, Z., Zhang, J., Tang, Z., Wang, Y., Gao, T., Liu, X., Feng, M. A., & Chao, L. (2022). Tissue distribution and changes in dopamine during development and stress responses in Malus germplasm. Journal of Integrative Agriculture, 21(3), 710–724. https://doi.org/10.1016/S2095-3119(20)63590-0
  • Zomer, R. T., Bossio, D. A., Sommer, R., & Verchot, L. V. (2017). Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports, 7(1), 15554. https://doi.org/10.1038/s41598-017-15794-8
  • Zulfiqar, F., & Ashraf, M. (2020). Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. Plant Molecular Biology, 105(1–2), 11–41. https://doi.org/10.1007/s11103-020-01077-w