489
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Sorghum allelopathy under field conditions may be caused by a combination of allelochemicals

ORCID Icon &
Article: 2324528 | Received 27 Apr 2023, Accepted 24 Feb 2024, Published online: 21 Mar 2024

References

  • Adewusi, S. R. A. (1990). Turnover of dhurrin in green sorghum seedlings. Plant Physiology, 94(3), 1–28. https://doi.org/10.1104/pp.94.3.1219
  • Ajeigbe, H. A., Akinseye, F. M., Ayuba, K., & Jonah, J. 018). (2018). Productivity and water use efficiency of Sorghum [Sorghum bicolor (L.) Moench] grown under different nitrogen applications in Sudan Savanna Zone, Nigeria. International Journal of Agronomy, 2018, 1–11. https://doi.org/10.1155/2018/7676058
  • Ali, A. E. E., Husselmann, L. H., Tabb, D. L., & Ludidi, N. (2023). Comparative proteomics analysis between maize and sorghum uncovers important proteins and metabolic pathways mediating drought tolerance. Life (Basel, Switzerland), 13(1), 170. https://doi.org/10.3390/life13010170
  • Alsaadawi, I. S., Al-Khateeb, T. A., Hadwan, H. A., & Lahmood, N. R. (2015). A chemical basis for differential allelopathic potential of root exudates of Sorghum bicolor (L.) Moench cultivars on companion weeds. Journal of Allelochemical Interactions, 1, 49–55.
  • An, M., Johnson, I. R., & Lovett, J. V. (1993). Mathematical modeling of allelopathy: biological response to allelochemicals and its interpretation. Journal of Chemical Ecology, 19(10), 2379–2388. https://doi.org/10.1007/BF00979671
  • Andiku, C., Shimelis, H., Laing, M., Shayanowako, A. I. T., Ugen, M. A., Manyasa, E., & Ojiewo, C. (2021). Assessment of sorghum production constraints and farmer preferences for sorghum variety in Uganda: Implications for nutritional quality breeding. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 71(7), 620–632. https://doi.org/10.1080/09064710.2021.1944297
  • Ashraf, M., & Akhlaq, M. (2007). Effects of sorghum leaves, roots and stems water extract, hand weeding and herbicide on weeds suppression and yield of wheat. Sarhad Journal of Agriculture, 23(2), 321–327.
  • Atokple, I. D. K., Oppong, G. K., & Chikpah, S. K. (2014). Evaluation of grain and sugar yields of improved sweet sorghum (Sorghum bicolor) varieties in the Guinea Savanna zone of Ghana. Pinnacle Agricultural Research & Management, 2(2), 374–382.
  • Ayeni, M., & Kayode, J. (2013). Allelopathic effects of aqueous extracts from residues of sorghum bicolor stem and maize inflorescence on the germination and growth of Euphorbia heterophylla L. Journal of Plant Studies, 2(2), 1–6. https://doi.org/10.5539/jps.v2n2p7
  • Baerson, S. R., Rimando, A. M., & Pan, Z. (2008). Probing allelochemical biosynthesis in sorghum root hairs. Plant Signaling and Behavior, 3(9), 667–670. https://doi.org/10.4161/psb.3.9.5779
  • Bai, Z., Mao, S., Han, Y., Feng, L., Wang, G., Yang, B., Zhi, X., Fan, Z., Lei, Y., Du, W., & Li, Y. (2016). Study on light interception and biomass production of different cotton cultivars. PLoS ONE, 11(5), e0156335. https://doi.org/10.1371/journal.pone.0156335
  • Barber, T., Scott, B., & Norsworthy, J. (2015). Weed control in grain sorghum. Chapter 8. Arkansas Grain Sorghum Production Handbook.
  • Belz, R. G. (2007). Allelopathy in crop/weed interactions: An update. Pest Management Science, 63(4), 308–326. https://doi.org/10.1002/ps.1320
  • Bjarnholt, N., Neilson, E. H. J., Crocoll, C., Jørgensen, K., Motawia, M. S., Olsen, C. E., Dixon, D. P., Edwards, R., & Møller, B. L. (2018). Glutathione transferases catalyse recycling of auto-toxic cyanogenic glucosides in sorghum. The Plant Journal: For Cell and Molecular Biology, 94(6), 1109–1125. https://doi.org/10.1111/tpj.13923
  • Blomstedt, C. K., Gleadow, R. M., O’Donnell, N., Naur, P., Jensen, K., Laursen, T., Olsen, C. E., Stuart, P., Hamill, J. D., Møller, B. L., & Neale, A. D. (2012). A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnology Journal, 10(1), 54–66. https://doi.org/10.1111/j.1467-7652.2011.00646.x
  • Blum, U. (2002). Soil solution concentrations of phenolic acids as influenced by evapotranspiration. Third World Congress on Allelopathy, Abstract No. 56.
  • Breazeale, J. F. (1924). The injurious after-effects of sorghum. Agronomy Journal, 16(11), 689–700. https://doi.org/10.1080/02571862.2019.1706003
  • Cavatassi, R., Lipper, L., & Narloch, U. (2011). Modern variety adoption and risk management in drought prone areas: Insights from the sorghum farmers of eastern Ethiopia. Agricultural Economics, 42(3), 279–292. https://doi.org/10.1111/j.1574-0862.2010.00514.x
  • Chapko, L. B., & Brinkman, M. A. (1991). Interrelationships beween panicle weight, grain yield, and grain yieldcomponents in oat. Crop Science Crop Breeding, Genetics and Cytology, 31(4), 878–882. https://doi.org/10.2135/cropsci1991.0011183X003100040007x
  • Cheema, Z. A. (1988). Weed control in wheat through sorghum allelochemicals [PhD thesis]. Agronomy Department, University of Agriculture, Faisalabad, Pakistan. https://doi.org/10.2135/cropsci1991.0011183X003100040007x
  • Cheema, Z. A., & Ahmed, S. (1992). Allelopathy: A potential tool for weed management. Proceedings of National Seminar on the role of Plant health and care in Agricultural Production held on December 28–29, 1988 at University of Agriculture, Faisalabad, Pakistan.
  • Cheema, Z. A., Khaliq, A., & Ali, K. (2002). Efficacy of sorgaab for weed control in wheat grown at different fertility levels. Pakistan Journal of Weed Science Research, 8, 33–38.
  • Chiduza, C., Waddington, S. R., & Rukuni, M. (1995). Evaluation of sorghum technologies for smallholders in a semi-arid region of Zimbabwe (Part I): Production practices and development of an experimental agenda. Journal of Applied Science in Southern Africa, 1(1), 1–22.
  • Chikowo, R., Corbeels, M., Tittonell, P., Vanlauwe, B., Whitbread, A., & Giller, K. E. (2008). Aggregating field-scale knowledge into farm-scale models of African smallholdersystems: Summary functions to simulate crop production using APSIM. Agricultural Systems. 97(3), 151–166. https://doi.org/10.1016/j.agsy.2008.02.008
  • Chipomho, J., Rugare, J. T., Mabasa, S., Zingore, S., Mashingaidze, A. B., & Chikowo, R. (2020). Short- term impacts of soil nutrient management on maize (Zea mays L.) productivity and weed dynamics along a toposequence in Eastern Zimbabwe. Heliyon, 6(10), e05223. https://doi.org/10.1016/j.heliyon.2020.e05223
  • Chivinge, O. A. (1990). Weed science technological needs for the communal areas of Zimbabwe. Zambezia, 17(2), 133–143. https://handle.net/10646/521
  • Czarnota, M. A., Rimando, A. M., & Weston, L. A. (2003). Evaluation of root exudates of seven sorghum accessions. Journal of Chemical Ecology, 29(9), 2073–2083. https://doi.org/10.1023/a:1025634402071
  • Department of Agriculture, Forestry and Fisheries (DAFF). (2010). Sorghum—Production guideline. DAFF.
  • Davis, C. L. (2011). Climate risk and vulnerability: A handbook for Southern Africa (p. 92). Council for Scientific and Industrial Research.
  • Dayan, F. E. (2006). Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta, 224(2), 339–346. https://doi.org/10.1007/s00425-005-0217-5
  • Dayan, F. E., Rimando, A. M., Pan, Z., Baerson, S. R., Gimsing, A. L., & Duke, S. O. (2010). Sorgoleone. Phytochemistry, 71(10), 1032–1039. https://doi.org/10.1016/j.phytochem.2010.03.011
  • Duke, S. O., Cedergreen, N., Velini, E. D., & Belz, R. G. (2006). Hormesis: is it an important factor in herbicide use and allelopathy? Outlooks on Pest Management, 17, 29–33.
  • Duke, S. O. (2015). Proving allelopathy in crop - weed interactions. Weed Science, 63(sp1), 121–132. https://doi.org/10.1614/WS-D-13-00130.1
  • Einhellig, F. A. (1995). Allelopathy: Current status and future goals. In ACS symposium series. American Chemical Society.
  • Einhellig, F. A., & Souza, I. F. (1992). Phytotoxicity of sorgoleone found in grain sorghum root exudates. Journal of Chemical Ecology, 18(1), 1–11. https://doi.org/10.1007/BF00997160
  • Einhellig, F. A., & Rasmussen, JA. (1989). Prior cropping with grain sorghum inhibits weeds. Journal of Chemical Ecology, 15(3), 951–960. https://doi.org/10.1007/BF01015190
  • Everaarts, P. A. (1993). Effects of competition with weeds on the growth, development and yield of sorghum. The Journal of Agricultural Science, 120(2), 187–196. https://doi.org/10.1017/S0021859600074220
  • Facenda, G., Real, M., Galán-Pérez, J. A., Gámiz, B., & Celis, R. (2023). Soil effects on the bioactivity of hydroxycoumarins as plant allelochemicals. Plants (Basel, Switzerland), 12(6), 1278. https://doi.org/10.3390/plants12061278
  • Food and Agriculture Organization of the United Nations (FAO). (2009). The International Treaty on Plant Genetic Resources for Food and Agriculture. Standard material transfer agreement. FAO.
  • Food and Agriculture Organization of the United Nations (FAO). (2019). Early Warning Early Action report on food security and agriculture (January–March 2019). FAO. 48p.
  • Farooq, A., Farooq, N., Akbar, H., Hassan, Z. U., & Gheewala, S. H. (2023). A critical review of climate change impact at a global scale on cereal crop production. Agronomy, 13(1), 162. https://doi.org/10.3390/agronomy13010162
  • Ferrell, J. A., MacDonald, G. E., Brecke, B. J., & Devkota, P. (2022). Weed management in sorghum. EDIS, 2022(1), 1–5. https://doi.org/10.32473/edis-wg002-2022
  • Ficiciyan, A., Loos, J., Sievers-Glotzbach, S., & Teja Tscharntke, T. (2018). More than Yield: Ecosystem services of traditional versus modern crop varieties revisited. Sustainability, 10(8), 2834. https://doi.org/10.3390/su10082834
  • Figuié, M., Munsaka, L., & Dzingiria, V. (2021). A socio-anthropological study on wild meat consumption in Binga district). A report for the KaZa SWM Programme. UE Sustainable Wildlife Management project. FAO, CIRAD, CIFOR and WCS; Montpellier.
  • Fiorucci, A.-S., & Fankhauser, C. (2017). Plant strategies for enhancing access to sunlight. Current Biology: CB, 27(17), R931–R940. https://doi.org/10.1016/j.cub.2017.05.085
  • Forney, D. R., & Foy, C. L. (1985). Phytotoxicity of products from rhizospheres of a sorghum-sudangrass hybrid (Sorghum bicolor × Sorghum sudanense). Weed Science, 33(5), 597–604. https://doi.org/10.1017/S0043174500082941
  • Forney, R. D., Foy, C. L., & Wolf, D. D. (1985). Weed suppression in no-till alfalfa (Medicago sativa) by prior cropping of summer-annual forage grasses. Weed Science, 33(4), 490–497. https://doi.org/10.1017/S0043174500082710
  • Gao Y, Wang X, Li J, Lee CT, Ong PY, Zhang Z, Li C. (2020). Effect of aquaculture salinity on nitrification and microbial community in moving bed bioreactors with immobilized microbial granules. Bioresource Technology 297, 122427. https://doi.org/10.1016/j.biortech.2019.122427
  • Gao, X., Uno, K., Sarr, P. S., Yoshihashi, T., Zhu, Y., & Subbarao, G. V. (2022). High sorgoleone producing sorghum genetic stocks suppress soil nitrification and N2O emissions better than low-sorgoleone producing genetic stocks. Plant and Soil, 477(1-2), 793–805. https://doi.org/10.1007/s11104-022-05474-6
  • Galon, L., Santin, C. O., Andres, A., Basso, F. J. M., Nonemacher, F., Agazzi, L. R., Silva, A. F., Holz, C. M., & Fernandes, F. F. (2018). Competitive interaction between sweet sorghum with weeds. Planta Daninha, 36(0), e018173689. https://doi.org/10.1590/s0100-83582018360100053
  • Ghassan, J. Z., Zakaria, W., Shaari, A. R., & Mohammud, C. H. (2016). The stimulatory and inhibitory effects of mungbean extract on germination and seedling growth of three crop species. International Journal of Scientific and Technical Research in Engineering, 1(8), 1–8.
  • Gomez, K. A., & Gomez, A. A. (1984). Statistical for agricultural research (2nd ed.). John Wiley and Sons.
  • Govindasamy, P., Muthusamy, S. K., Bagavathiannan, M., Mowrer, J., Jagannadham, P. T. K., Maity, A., Halli, H. M., Sujayananad, G. K., Vadivel, R., Das, T. K., Raj, R., Pooniya, V., Babu, S., Rathore, S. S., Muralikrishnan, L., & Gopal Tiwari, G. (2023). Nitrogen use efficiency—a key to enhance crop productivity under a changing climate. Frontiers in Plant Science, 14, 1121073. https://doi.org/10.3389/fpls.2023.11210
  • Hammer, Ø., Harper, D. A. T., & Paul, D. R. (2001). Past: Paleontological statistics SoftwarePackage for education and data analysis. In T. D. Hatten, N. A. Bosque-Pérez, J. R. Labonte, S. O. Guy, & S. D. Eigenbrode (Eds.), Palaeontol Electron (Vol. 4 pp. 1–9). Palaeontologia Electronica.
  • Hickman, D. T., Comont, D., Rasmussen, A., & Birkett, M. A. (2023). Novel and holistic approaches are required to realize allelopathic potential for weed management. Ecology and Evolution, 13(4), e10018. https://doi.org/10.1002/ece3.10018
  • Horvath, D. P., Clay, S. A., Swanton, C. J., Anderson, J. V., & Chao, W. S. (2023). Weed-induced crop yield loss: A new paradigm and new challenges. Trends in Plant Science, 28(5), 567–582. https://doi.org/10.1016/j.tplants.2022.12.014.
  • Hossain, M. S., Islam, M. N., Rahman, M. M., Mostofa, M. G., & Khan, M. A. R. (2022). Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. Journal of Agriculture and Food Research, 8, 100300. https://doi.org/10.1016/j.jafr.2022.100300
  • International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). (2018). ICRISAT-Zimbabwe Regional genebank: Conserving and maintaining germplasm for today and future generation. ICRISAT Regional Genebank.
  • Idu, M. (2014). Studies on the allelopathic effect of aqueous extract of Ageratum conyzoides Asteraceae L. on seedling growth of Sorghum bicolor Linn. (Poaceae). Academia Journal of Agricultural Research, 2(3), 74–79. https://doi.org/10.15413/ajar.2013.0174
  • Ifie, B. E., Kwapong, N. A., Anato-Dumelo, M., Konadu, B. A., Tongoona, P. B., & Eric Yirenkyi Danquah, E. Y. (2022). Assessment of farmers readiness to adopt maize hybrid varieties for high productivity in Ghana. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 72(1), 506–515. https://doi.org/10.1080/09064710.2021.2018032
  • Inderjit, K., & Duke, S. O. (2003). Ecophysiological aspects of allelopathy. Planta, 217(4), 529–539. https://doi.org/10.1007/s00425-003-1054-z
  • Inderjit, Kaur, M., & Foy, C. L. (2001). On the significance of field studies in allelopathy. Weed Technology, 15, 792–797. https://doi.org/10.1614/0890-037X(2001)015[0792:OTSOFS]2.0.CO;2
  • Inderjit, Weston LA. (2000). Are laboratory bioassays for allelopathy suitable for prediction of field responses? Journal of Chemical Ecology 26(9): 2111–2118. https://doi.org/10.1023/A:1005516431969
  • Jassim, A. A., Abbas Al-Khaldy, R. A., & Mohmed, A. S. (2022). Effect of three growth stages of sorghum residues on lolium temulentum weeds associated with the barley crop. IOP Conference Series: Earth and Environmental Science, 1060(1), 012112. https://doi.org/10.1088/1755-1315/1060/1/012112
  • Javaid, A., Shafique, S., Bajwa, R., & Shafique, S. (2006). Effect of aqueous extracts of allelopathic crops on germination and growth of Parthenium hysterophorus L. South AfricanJournal of Botany, 72(4), 609–612. https://doi.org/10.1016/j.sajb.2006.04.006
  • Kakar, K., Xuan, T. D., & Khanh, T. D. (2023). Allelopathic potential of sweet sorghum root exudates and identification of the relevant allelochemicals. Agrochemicals, 2(1), 96–105. https://doi.org/10.3390/agrochemicals2010007
  • Kalema, E. P., Akpo, E., Muricho, G., Ringo, J., Ojiewo, C. O., & Varshney, R. K. (2022). Mapping out market drivers of improved variety seed use: tHe case of sorghum in Tanzania. Heliyon, 8(1), e08715. https://doi.org/10.1016/j.heliyon.2022.e08715
  • Kaliba, A. R., Mazvimavi, K., Gregory, T. L., Mgonja, F. M., & Mgonja, M. (2018). Factors affecting adoption of improved sorghum varieties in Tanzania under information and capital constraints. Agricultural and Food Economics, 6(1), 1–21. https://doi.org/10.1186/s40100-018-0114-4
  • Kandhro, M. N., Tunio, S., Rajpar, I., & Chachar, Q. (2014). Allelopathic impact of sorghum and sunflower intercropping on weed management and yield enhancement in cotton. Sarhad Journal of Agriculture, 30(3), 311–318. https://doi.org/10.2016/0261-2194(83)90042-X
  • Karavina, C., Mandumbu, R., Parwada, C., & Tibugari, H. (2011). A review of the occurrence, biology and management of common bacterial blight. Journal of Agricultural Technology, 7(6), 1459–1474.
  • Khalifa, M., & Eltahir, E. A. B. (2023). Assessment of global sorghum production, tolerance, and climate risk. Frontiers in Sustainable Food Systems, 7, 1184373 https://doi.org/10.3389/fsufs.2023.1184373
  • Khaliq, A., Matloob, A., Cheema, Z. A., & Farooq, M. (2011). Allelopathic activity of crop residue incorporation alone or mixed against rice and its associated grass weed jungle rice (Echinochloa colona [L.] Link). Chilean Journal of Agricultural Research, 71(3), 418–423. https://doi.org/10.4067/S0718-58392011000300012
  • Khan, S., Irshad, S., Mehmood, F., & Nawaz, M. (2018). Combined application of sorghum and mulberry water extracts is effective and economical way for weed management in wheat. Asian Journal of Agriculture & Biology, 6(2), 221–227.
  • Kimbi, T. G., Akpo, E., Kongola, E., Ojiewo, C. O., Vernooy, R., Muricho, G., Tabo, R., Lukurugu, G. A., Varshney, R., & Tabo, R. (2020). A probit analysis of determinants of adoption of improved sorghum technologies among farmers in Tanzania. Journal of Agricultural Science, 13(1), 73–87. https://doi.org/10.5539/jas.v13n1p73
  • Kim, S. Y., de Datta, S. K., Robles, R. P., Kim, K. U., Lee, S. C., & Shin, D. H. (1993). Allelopathic effect of sorghum extract and residues on selected crops and weeds. Korean Journal of Weed Science, 14(1), 34–41.
  • Kremer, R. J., & Reinbott, T. M. (2021). Allelopathy of sorghum residues on weed establishment is affected by hybrid, phenolic acid contents and environment. Journal of Plant Sciences, 9(1), 25–31. https://doi.org/10.11648/j.jps.20210901.14
  • Kundra, V., Aulakh, C. S., & Bhullar, M. S. (2023). Integration of allelopathic water extracts with cultural practices for weed management in organic wheat. Indian Journal of Weed Science, 55(1), 24–31. https://doi.org/10.5958/0974-8164.2023.00004.7
  • Laza, M. R. C., Peng, S., Akita, S., & Saka, H. (2004). Effect of panicle size on grain yield of IRRI-Released indica rice cultivars in the wet season. Plant Production Science, 7(3), 271–276. https://doi.org/10.1626/pps.7.271
  • Lee, N., & Thierfelder, C. (2017). Weed control under conservation agriculture in dryland smallholder farming systems of southern Africa. A review. Agronomy for Sustainable Development, 37(5), 1–25. https://doi.org/10.1007/s13593-017-0453-7
  • Lehnhoff, E. A., Neher, P., Indacochea, A., & Beck, L. (2022). Electricity as an effective weed control tool in non-crop areas. Weed Research, 62(2), 149–159. https://doi.org/10.1111/wre.12523
  • Little, N. G., DiTommaso, A., Westbrook, A. S., Ketterings, Q. M., & Mohler, C. L. (2021). Effects of fertility amendments on weed growth and weed–crop competition: A review. Weed Science, 69(2), 132–146. https://doi.org/10.1017/wsc.2021.1
  • Lottering, S., Mafongoya, P., & Lottering, R. (2021). Drought and its impacts on small-scale farmers in sub-Saharan Africa: A review. South African Geographical Journal, 103(3), 319–341. https://doi.org/10.1080/03736245.2020.1795914
  • Mafongoya, P. L., Bationo, A., Kihara, J., & Waswa, B. S. (2006). Appropriate technologies to replenish soil fertility in southern Africa. Nutrient Cycling in Agroecosystems, 76(2-3), 137–151. https://doi.org/10.1007/s10705-006-9049-3
  • Mamudu, A. Y., Baiyeri, K. P., & Echezon, B. (2019). Integrated weed management systems in sorghum based cropping system in Nigeria. Journal of Agricultural Biotechnology and Sustainable Development, 11(3), 20–26. https://doi.org/10.5897/JABSD2019.0342
  • Mandumbu, R., Nyawenze, C., Rugare, J. T., Nyamadzawo, G., Parwada, C., & Tibugari, H. (2020). Tied ridges and better cotton breeds for climate change adaptation. In W. Leal Filho (Eds.), African handbook of climate change adaptation. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-42091-8_23-1
  • Mandumbu, R., Karavina, C., Tibugari, H., Mandizvidza, L., Mhungu, S., & Rugare, J. (2016). Allelopathic potential of sorghum, wheat and maize residue extracts on germination and early establishment of Amaranthus hybridus (L.) and Rottboellia cochinchinensis (L.). Journal of Applied Science in Southern Africa, 22(2), 21–29. https://doi.org/10.5897/UJ-JASSA.17.005.2
  • Mandumbu, R., Jowah, P., Karavina, C., & Tibugari, H. (2011). Integrated weed management in Zimbabwe’s smallholder sector: where are we? A review. Modern Applied Science, 5(5), 111–117. https://doi.org/10.5539/mas.v5n5p111
  • Mashingaidze, A. B. (2004). Improving weed management and crop productivity in maize systems in Zimbabwe [PhD thesis]. Wageningen University.
  • Mindaye, T. T., Mace, E. S., Godwin, I. D., & Jordan, D. R. (2016). Heterosis in locally adapted sorghum genotypes and potential of hybrids for increased productivity in contrasting environments in Ethiopia. The Crop Journal, 4(6), 479–489. https://doi.org/10.1016/j.cj.2016.06.020
  • Miriti, P., Regassa, M. D., Ojiewo, C. O., & Melesse, M. B. (2022). Farmers’ preferences and willingness to pay for traits of sorghum varieties: Informing product development and breeding programs in Tanzania. Journal of Crop Improvement, 37(2), 253–272. https://doi.org/10.1080/15427528.2022.2079038
  • Mubeen, K., Nadeem, M. A., Tanveer, A., & Zahir, Z. A. (2012). Allelopathic effects of sorghum and sunflower water extracts on germination and seedling growth of rice (Oryza sativa L.) And three weed species. Journal of Animal and Plant Science, 22(3), 738–746.
  • Mundia, C. W., Secchi, S., Akamani, K., & Wang, G. (2019). A regional comparison of factors affecting global sorghum production: The case of North America, Asia and Africa’s Sahel. Sustainability, 11(7), 2135. https://doi.org/10.3390/su11072135
  • Murimwa, J. C., Rugare, J. T., Mabasa, S., & Mandumbu, R. (2019). Allelopathic effects of aqueous extracts of sorghum (Sorghum bicolor L. Moench) on the early seedling growth of sesame (Sesamum indicum L.) varieties and selected weeds. International Journal of Agronomy, 20195494756, 1–12. https://doi.org/10.1155/2019/5494756
  • Musara, J. P., Tibugari, H., Moyo, B., & Mutizira, C. (2021). Crop-livestock integration practices, knowledge, and attitudes among smallholder farmers: Hedging against climate change-induced shocks in semi-arid Zimbabwe. Open Life Sciences, 16(1), 1330–1340. https://doi.org/10.1515/biol-2021-0135
  • Mwololo, B. M. (2010). The role of farmers in biodiversity conservation of maize landraces through farming systems in Kenya. Journal of Developments in Sustainable Agriculture, 5, 155–177.
  • Naeem, M., Cheema, Z. A., Ihsan, M. Z., Hussain, Y., Mazari, A., & Abbas, H. T. (2018). Allelopathic effects of different plant water extracts on yield and weeds of wheat. Planta Daninha, 36(0), e018177840. https://doi.org/10.1590/s0100-83582018360100094
  • Ndlovu, E., van Staden, J., & Maphosa, M. (2021). Morpho-physiological effects of moisture, heat and combined stresses on Sorghum bicolor [Moench (L.)] and its acclimation mechanisms. Plant Stress, 2, 100018. https://doi.org/10.1016/j.stress.2021.100018
  • Netzly, D. H., & Butler, L. G. (1986). Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Science, 26(4), 775–778. https://doi.org/10.2135/cropsci1986.0011183X002600040031x
  • Ngwenyama, P., Siziba, S., Nyanga, L. K., Stathers, T. E., Mubayiwa, M., Mlambo, S., Nyabako, T., Bechoff, A., Shee, A., & Mvumi, B. M. (2023). Determinants of smallholder farmer’ maize grain storage protection practices and understanding of the nutritional aspects of grain postharvest losses. Food Security, 15(4), 937–951. https://doi.org/10.1007/s12571-023-01349-5
  • Nimbal, C. I., Pedersen, J. F., Yerkes, C. N., Weston, L. A., & Weller, S. C. (1996). Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. Journal of Agricultural and Food Chemistry, 44(5), 1343–1347. https://doi.org/10.1021/jf950561n
  • Nyabanga, L., Mandumbu, R., Rugare, J. T., Mafuse, N., Zivenge, E., Tibugari, H., Nyamadzawo, G., & Gadzirayi, C. T. (2021). Preventing fall armyworm (Spodoptera frugiperda JE Smith) damage in maize by altering planting time and using varied genotypes. In G. Nhamo (Eds.), Sustainable development goals for society Vol. 2. Sustainable Development Goals Series. https://doi.org/10.1007/978-3-030-70952-5_4
  • Nyamangara, J., Mashingaidze, N., Masvaya, E. N., Nyengerai, K., Kunzekweguta, M., Tirivavi, R., & Mazvimavi, K. (2014). Weed growth and labor demand under hand-hoe based reducedtillage in smallholder farmers’ fields in Zimbabwe. Agriculture, Ecosystems and Environment, 187, 146–154. https://doi.org/10.1016/j.agee.2013.10.005
  • Nyamapfene, K. (1991). The soils of Zimbabwe. Harare, Nehanda Publishers.
  • Okuthe, I. K., Ngesa, F. U., & Ochola, W. W. (2013). The socio-economic determinants of the adoption of improved sorghum varieties and technologies by smallholder farmers: Evidence from South Western Kenya. International Journal of Humanities and Social Science, 3(18), 280–292.
  • Oliveira, J. S., Peixoto, C. P., Ledo, C. A. S., & Almeida, A. T. (2019). Aqueous plant extracts in the control of Bidens pilosa L. Arquivos do Instituto Biológico, 86, 1–6. https://doi.org/10.1590/1808-1657000532016
  • Olofsdotter M, Jensen LB, Courtois B. (2002). Improving crop competitive ability using allelopathy – an example from rice. Plant Breeding. 121:1–9.
  • Omanya, G. O., Ayiecho, P. O., & Nyabundi, J. O. (1997). Variation for adaptability to dryland conditions in sorghum. African Crop Science Journal, 5(2), 127–138. https://hdl.handle.net/1807/23398
  • Ostmeyer, T. J., Bahuguna, R. N., Kirkham, M. B., Bean, S., & Jagadish, S. V. K. (2022). Enhancing sorghum yield through efficient use of nitrogen – challenges and opportunities. Frontiers in Plant Science, 13, 845443. https://doi.org/10.3389/fpls.2022.845443
  • Pan, Z., Baerson, S. R., Wang, M., Bajsa-Hirschel, J., Rimando, A. M., Wang, X., Nanayakkara, N. P. D., Noonan, B. P., Fromm, M. E., Dayan, F. E., Khan, I. A., & Duke, S. O. (2018). A cytochrome P450 CYP71 enzyme expressed in Sorghum bicolor root hair cells participates in the biosynthesis of the benzoquinone allelochemical sorgoleone. The New Phytologist, 218(2), 616–629. https://doi.org/10.1111/nph.15037
  • Panasiuk, O., Bills, D. D., & Leather, G. R. (1986). Allelopathic influence of Sorghum bicolor on weeds during germination and early development of seedling. Journal of Chemical Ecology, 12(6), 1533–1543. https://doi.org/10.1007/BF01012370
  • Pandian, B. A., Sexton-Bowser, S., Prasad, P. V. V., & Jugulam, M. (2021). Current status of herbicide-resistant grain sorghum (Sorghum bicolor). Pest Management Science, 78(2), 409–415. https://doi.org/10.1002/ps.6644
  • Parwada, C., Van Tol, J., Tibugari, H., & Mandumbu, R. (2020). Characterisation of soil physical properties and resistance to erosion in different areas of soil associations. African Crop Science Journal, 28(1), 93–109. https://doi.org/10.4314/acsj.v28i1.8
  • Pinto, D. R., Menezes, C. B., Carvalho, A. J., Portugal, A. F., Magalhães, P. C., Silva, K. J., Santos, C. V., Campos, A. F., Oliveira, S. M., & Aspiazú, I. (2023). Seedling selection of sorghum for drought tolerance based on root morphology. REVISTA BRASILEIRA DE MILHO E SORGO, 22, e1310. https://doi.org/10.18512/rbms2023v22e1310
  • Putnam, A. R., & DeFrank, J. (1983). Use of phytotoxic plant residues for selective weed control. Crop Protection, 2(2), 173–181. https://doi.org/10.1016/0261-2194(83)90042-X
  • Qasem, J. R. (2019). Weed seed dormancy: The ecophysiology and survival strategies. In Seed dormancy and germination. InctechOpen. https://doi.org/10.5772/intechopen.88015
  • Rad, R. D., Sharifabad, H. H., Torabi, M., Azizinejad, R., Salemi, H., & Soltanabadi, M. H. (2023). Drought stress tolerance based on selection indices of resistant crops variety. Global Journal of Environmental Science and Management, 9(2), 287–298. https://doi.org/10.22034/gjesm.2023.02.08
  • Rashid, H. U., Khan, A., Hassan, G., Khan, S. U., Saeed, M., Khan, S. A., Khan, S. M., & Hashim, S. (2020). Weed suppression in maize (Zea mays L.) through the allelopathic effects of sorghum [Sorghum bicolor (L.) Conard Moench.], sunflower (Helianthus annuus L.) and parthenium (Parthenium hysterophorus L.) plants. Applied Ecology and Environmental Research, 18(4), 5187–5197. https://doi.org/10.15666/aeer/1804_51875197
  • Reicosky, D., & Crovetto, C. (2014). No-till systems on the Chequen Farm in Chile: A success story in bringing practice and science together. International Soil and Water Conservation Research, 2(1), 66–77. 2014 https://doi.org/10.1016/S2095-6339(15)30014-9
  • Roth, C. M., Shroyer, J. P., & Paulsen, G. M. (2000). Allelopathy of sorghum on wheat under several tillage systems. Agronomy Journal, 92(5), 855–860. https://doi.org/10.2134/agronj2000.925855x
  • Saadan, H. M., Mgonja, M. A., & Obilana, A. B. (2000). Performance of the Sorghum Variety Macia in multiple environments in Tanzania. ISMN, 10, 41.
  • Sarr, S., Nakamura, S., Ando, Y., Iwasaki, S., & Subbarao, G. V. (2021). Sorgoleone production enhances mycorrhizal association and reduces soil nitrification in sorghum. Rhizosphere, 17, 100283. https://doi.org/10.1016/j.rhisph.2020.100283
  • Scavo, A., & Mauromicale, G. (2021). Crop allelopathy for sustainable weed management in agroecosystems: Knowing the present with a view to the future. Agronomy, 11(11), 2104. https://doi.org/10.3390/agronomy11112104
  • Sigua, G. C., Stone, K. C., Bauer, P. J., & Szogi, A. A. (2018). Biomass and nitrogen use efficiency of grain sorghum with nitrogen and supplemental irrigation. Agronomy Journal, 110(3), 1119–1127. https://doi.org/10.2134/agronj2017.09.0533
  • Sissoko, M., Smale, M., Castiaux, A., & Theriault, V. (2019). Adoption of new sorghum varieties in Mali through a participatory approach. Sustainability, 11(17), 4780. https://doi.org/10.3390/su11174780
  • Smale, M., Assima, A., Kergna, A., Thériault, V., & Weltzien, E. (2018). Farm family effects of adopting improved and hybrid sorghum seed in the Sudan Savanna of West Africa. Food Policy, 74, 162–171. https://doi.org/10.1016/j.foodpol.2018.01.001
  • Subbarao, G. V., Nakahara, K., Ando, Y., Sahrawat, K. L., Deshpande, S. P., Srinivasarao, P., Upadhyaya, H. D., & Ct Hash, C. T. (2015). Biological nitrification inhibition (BNI) activity in sorghum: Potential role for enhancing nitrogen-use efficiency (NUE). In Proceedings of Global Consultation on Millets Promotion for Health and Nutritional Security. ICAR - Indian Institte of Millets Research.
  • Stathers, T., Holcroft, D., Kitinoja, L., Mvumi, B. M., English, A., Omotilewa, O., Kocher, M., Ault, J., & Torero, M. (2020). A scoping review of interventions for crop postharvest loss reduction in sub-Saharan Africa and South Asia. Nature Sustainability, 3(10), 821–835. https://doi.org/10.1038/s41893-020-00622-1
  • Steel, R. G. D., & Torrie, J. H. (1984). Principles and procedures of statistics (2nd ed.). MacGraw-Hill.
  • Strecker, K., Bitzer, V., & Kruijssen, F. (2022). Critical stages for post-harvest losses and nutrition outcomes in the value chains of bush beans and nightshade in Uganda. Food Security, 14(2), 411–426. https://doi.org/10.1007/s12571-021-01244-x
  • Tesfamariam, T., Yoshinaga, H., Deshpande, S. P., Rao, P. S., Sahrawat, K. L., Ando, Y., Nakahara, K., Hash, C. T., & Subbarao, G. V. (2014). Biological nitrification inhibition in sorghum: the role of sorgoleone production. Plant and Soil, 379(1–2), 325–335. https://doi.org/10.1007/s11104-014-2075-z
  • Tibamanya, F. Y., Henningsen, A., & Milanzi, M. A. (2022). Drivers of and barriers to adoption of improved sunflower varieties amongst smallholder farmers in Singida, Tanzania: A double-hurdle approach. Q Open, 2(1), 1–25. https://doi.org/10.1093/qopen/qoac008
  • Tibugari, H., Musendo, F. A., Mhungu, S., Mandumbu, R., & Mutsengi, K. (2013). The fruitfully scourge: Has Zimbabwe been spared? Archives of Phytopathology and Plant Protection, 47(7), 821–829. https://doi.org/10.1080/03235408.2013.823321
  • Tibugari, H., & Jowah, P. (2013). Are Helicoverpa armigera and Tetranychus spp. populations still susceptible to pesticides? A Zimbabwean study. Archives of Phytopathology and Plant Protection, 47(10), 1146–1157. https://doi.org/10.1080/03235408.2013.832866
  • Tibugari, H., Chikasha, T., Manyeruke, N., Mathema, N., Musara, J. P., Dlamini, D., Mapuranga, R., Mapanje, O., Banda, A., & Parwada, C. (2019a). Poor maize productivity in Zimbabwe: Can collusion in pricing by seed houses be the cause? Cogent Food & Agriculture, 5(1), 1682230. https://doi.org/10.1080/23311932.2019.1682230
  • Tibugari, H., Chiduza, C., Mashingaidze, A. B., & Mabasa, S. (2019a). Quantification of sorgoleone in sorghum accessions from eight southern African countries. South African Journal of Plant and Soil, 36(1), 41–50. https://doi.org/10.1080/02571862.2018.1469794
  • Tibugari, H., Manyeruke, N., Mafere, G., Chakavarika, M., Nyamuzuwe, L., Marumahoko, P., & Mandumbu, R. (2019b). Allelopathic effect of stressing sorghum on weed growth. Cogent Biology, 5(1), 1684865. https://doi.org/10.1080/23312025.2019.1684865
  • Tibugari, H., Chiduza, C., & Mashingaidze, A. B. (2020a). A survey of problem weeds of sorghum and their management in two sorghum-producing districts of Zimbabwe. Cogent Social Sciences, 6(1), 1738840. https://doi.org/10.1080/23311886.2020.1738840
  • Tibugari, H., Chiduza, C., & Mashingaidze, A. B. (2020b). Farmer knowledge, attitude and practices on sorghum allelopathy in five sorghum producing districts of Zimbabwe. South African Journal of Plant and Soil, 37(2), 152–159. https://doi.org/10.1080/02571862.2019.1706003
  • Tibugari, H., Chiduza, C., Mashingaidze, A. B., & Mabasa, S. (2020c). High sorgoleone autotoxicity in sorghum (Sorghum bicolor (L.) Moench) varieties that produce high sorgoleone content. South African Journal of Plant and Soil, 37(2), 160–167. https://doi.org/10.1080/02571862.2020.1711539
  • Tibugari, H., Marumahoko, P., Mandumbu, R., Mangosho, E., Manyeruke, N., Tivani, S., Magaya, R., & Chinwa, H. (2020). Allelopathic sorghum aqueous extracts reduce biomass of hairy beggarticks. Cogent Biology, 6(1), 1810382. https://doi.org/10.1080/23312025.2020.1810382
  • Tibugari, H., Chiduza, C., Mashingaidze, A. B., & Mabasa, S. (2021). Incorporated sorghum residues reduce emergence and seedling growth of some crops. International Journal of Agriculture and Natural Resources, 48(2), 97–107. https://doi.org/10.7764/ijanr.v48i2.2298
  • Tibugari, H., Chiduza, C., Mashingaidze, A. B., & Mabasa, S. (2022). Reduced atrazine doses combined with sorghum aqueous extracts inhibit emergence and growth of weeds. African Journal of Food, Agriculture, Nutrition and Development, 22(3), 19840–19856. https://doi.org/10.18697/ajfand.108.19505
  • Tibugari, H., & Chiduza, C. (2022). Allelopathic sorghum aqueous root extracts inhibit germination and seedling growth of crops and weeds. African Journal of Food, Agriculture, Nutrition and Development, 22(4), 20036–20052. https://doi.org/10.18697/ajfand.109.19785
  • Trezzi, M. M., Vidal, R. A., Dick, D. P., Peralba, M. C. R., & Kruse, N. D. (2006). Sorptive behavior of sorgoleone in ultisol in two solvent systems and determination of its lipophilicity. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 41(4), 345–356. https://doi.org/10.1080/03601230600613780
  • Trezzi, M. M., Vidal, R. A., Balbinot, A. A., Bittencourt, H. H., & Filho, A. P. S. S. (2016). Allelopathy: Driving mechanisms governing its activity in agriculture. Journal of Plant Interactions, 11(1), 53–60. https://doi.org/10.1080/17429145.2016.1159342
  • Tu, M., Du, C., Yu, B., Wang, G., Deng, Y., Wang, Y., Chen, M., Chang, J., Yang, G., He, G., Xiong, Z., & Li, Y. (2023). Current advances in the molecular regulation of abiotic stress tolerance in sorghum via transcriptomic, proteomic, and metabolomic approaches. Frontiers in Plant Science, 14, 1147328. https://doi.org/10.3389/fpls.2023.1147328
  • Uchimiya, M. (2020). Proton-coupled electron transfers of defense phytochemicals in sorghum (Sorghum bicolor (L.) Moench). Journal of Agricultural and Food Chemistry, 68(46), 12978–12983. https://doi.org/10.1021/acs.jafc.9b07816
  • Uddin, M. R., Park, K. W., Kim, Y. K., Park, S. U., & Pyon, J. Y. (2010). Enhancing sorgoleone levels in grain sorghum root exudates. Journal of Chemical Ecology, 36(8), 914–922. https://doi.org/10.1007/s10886-010-9829-8
  • Uddin, M. R., Won, O. J., & Pyon, J. Y. (2010). Herbicidal effects and crop selectivity of sorgoleone, a sorghum root exudate under greenhouse and field conditions. Korean Journal of Weed Science, 30(4), 412–420. https://doi.org/10.5660/KJWS.2010.30.4.412
  • Uddin, M. R., Park, K. W., Pyon, J. Y., & Park, S.-U. (2013). Combined herbicidal effect of two natural products (sorgoleone and hairy root extract of tartary buckwheat) on crops and weeds. Australian Journal of Crop Science, 7(2), 227–233.
  • Uddin, M. R., Park, S. U., Dayan, F. E., & Pyon, J. Y. (2014). Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest Management Science, 70(2), 252–257. https://doi.org/10.1002/ps.3550
  • Vattuone, M. A., Sampietro, D. A., Soberón, J. R., Sgariglia, M. A., & Quiroga, E. N. (2009). Plant sampling and sample preparation. In D. A. Sampietro, C. A. N. Catalan, & M. A. Vattuone (Eds.), Isolation, identification and characterization of allelochemicals/natural products (pp. 31–69). Science Publishers.
  • Viator, R. P., Johnson, R. M., Grimm, C. C., & Richard, E. P.Jr. (2006). Allelopathic, autotoxic, and hormetic effects of postharvest sugarcane residue. Agronomy Journal, 98(6), 1526–1531. https://doi.org/10.2134/agronj2006.0030
  • VSN-International. (2011). GenStat for window (10th ed.), VSN International.
  • Wanga, M. A., Shimelis, H., & Mengistu, G. (2022). Sorghum production in northern Namibia: Farmers’perceived constraints and trait preferences. Sustainability, 14(16), 10266. https://doi.org/10.3390/su141610266
  • Weston, L. A., & Czarnota, M. A. (2001). Activity and persistence of sorgoleone, a long-chain hydroquinone produced by Sorghum bicolor. Journal of Crop Production, 4(2), 363–377. https://doi.org/10.1300/J144v04n02_17
  • Yang, X., Scheffler, B., & Weston, L. A. (2004). SOR1, a gene associated with bioherbicide production in sorghum root hairs. Journal of Experimental Botany, 55(406), 2251–2259. https://doi.org/10.1093/jxb/erh252
  • Yar, S., Khan, E. A., Hussain, I., Raza, B., Abbas, M. S., & Munazza, Z. (2020). Allelopathic influence of sorghum aqueous extracts and sorghum powder on germination indices and seedling vigor of hybrid corn and jungle rice. Planta Daninha, 38, e020192192. https://doi.org/10.1590/s0100-83582020380100005
  • Zimdahl, R. L. (2007). Fundamentals of weed science. Academic Press.