359
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Chemical composition of selected aromatic plant essential oils and their antifungal efficacy against toxigenic fungi associated with maize (Zea mays L)

ORCID Icon, , , , &
Article: 2329116 | Received 02 Jan 2024, Accepted 29 Feb 2024, Published online: 19 Mar 2024

References

  • Abdi-Moghadam, Z., Mazaheri, Y., Rezagholizade-Shirvan, A., Mahmoudzadeh, M., Sarafraz, M., Mohtashami, M., Shokri, S., Ghasemi, A., Nickfar, F., Darroudi, M., Hossieni, H., Hadian, Z., Shamloo, E., & Rezaei, Z. (2023). The significance of essential oils and their antifungal properties in the food industry: A systematic review. Heliyon, 9(11), 1. https://doi.org/10.1016/j.heliyon.2023.e21386
  • Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. 4th edn. Allured Publishing Corporation.
  • Al-Asmari, A., Athar, M., Al-Faraidy, A., & Almuhaiza, M. (2017). Chemical composition of essential oil of Thymus vulgaris collected from Saudi Arabian market. Asian Pacific Journal of Tropical Biomedicine, 7(2), 147–11. https://doi.org/10.1016/j.apjtb.2016.11.023
  • Alonso-Gato, M., Astray, G., Mejuto, J., & Simal-Gandara, J. (2021). Essential oils as antimicrobials in crop protection. Antibiotics (Basel, Switzerland), 10(1), 34. https://doi.org/10.3390/antibiotics10010034
  • Anjorin, T. S., Salako, E. A., & Makun, H. A. (2013). Control of toxigenic fungi and mycotoxins with phytochemicals : Potentials andchallenges. In mycotoxin and food safety in Developing Countries. InTech. https://doi.org/10.5772/53477
  • Arraiza, M., Gonzalez-Coloma, A., Andres, M., Berrocal-Lobo, M., Dominguez-Nunez, J. A., Jr, Navarro-Rocha, J., & Calderon-Guerrero, C. (2018). Antifungal effect of essential oils. Potential of Essential Oils, 146–164 https://doi.org/10.5772/intechopen.78008
  • Ayalew, A. (2010). Mycotoxins and surface and internal fungi of maize from Ethiopia. African Journal of Food, Agriculture, Nutrition and Development, 10(9), 10.4314/ajfand.v10i9.62890.
  • Badr, A., El-Shazly, H., Sakr, M., Farid, M., Hamouda, M., Elkhateeb, E., & Ahmad, H. S. (2021). Genetic diversity and volatile oil components variation in Achillea fragrantissima wild accessions and their regenerated genotypes. Journal of Genetic Engineering and Biotechnology, 19(1), 166. https://doi.org/10.1186/s43141-021-00267-3
  • Balouiri, M., Sadiki, M., & Ibnsouda, S. (2016). Methods for in vitro evaluating antimicrobial activity : A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
  • Barra, A. (2009). Factors affecting chemical variability of essential oils: A review of recent developments. Natural Product Communications, 4(8), 1934578X0900400. https://doi.org/10.1177/1934578X0900400827
  • Benbelaid, F., Abdoune, M., Khadir, A., & Bendahou, M. (2013). Drying effect on yield and antimicrobial activity of essential oils. International Journal of Medicinal Aromatic Plants, 3(1), 93–101.
  • Bhuiyan, M., Begum, J., & Sultana, M. (2009). Chemical composition of leaf and seed essential oil of Coriandrum sativum L. from Bangladesh. Bangladesh Journal of Pharmacology, 4(2), 150–153. https://doi.org/10.3329/bjp.v4i2.2800
  • Chang, X., Alderson, P., & Wright, C. (2009). Enhanced UV-B radiation alters basil (Ocimum basilicum L.) growth and stimulates the synthesis of volatile oils. Journal of Horticulture and Forestry, 1(2), 27–31.
  • Chang, Y., Harmon, P. F., Treadwell, D. D., Carrillo, D., Sarkhosh, A., & Brecht, J. K. (2022). Biocontrol potential of essential oils in organic horticulture systems : From farm to fork. Frointiners in Nutrition, 8, 1–26. https://doi.org/10.3389/fnut.2021.805138
  • Chen, W., & Viljoen, A. (2010). Geraniol—a review of a commercially important fragrance material. South African Journal of Botany, 76(4), 643–651. https://doi.org/10.1016/j.sajb.2010.05.008
  • Cosic, J., Vrandecic, K., Postic, J., Jurkovic, D., & Ravlic, M. (2010). In vitro antifungal activity of essential oils on growth of phytopathogenic fungi. Poljoprivreda, 16(2), 25–28.
  • Daba, A., Tadesse, M., Habte, G., Negawo, A. T., & Berecha, G. (2022). Phytochemical composition of essential oils from aromatic plants inherited with bioherbicidal activity in arabica coffee production system of Ethiopia. Journal of Agriculture and Food Research, 10, 100368. https://doi.org/10.1016/j.jafr.2022.100368
  • Dangol, S., Poudel, D. K., Ojha, P. K., Maharjan, S., Poudel, A., Satyal, R., Rokaya, A., Timsina, S., Dosoky, N. S., Satyal, P., & Setzer, W. N. (2023). Essential oil composition analysis of Cymbopogon species from Eastern Nepal by GC-MS and Chiral GC-MS, and antimicrobial activity of some major compounds. Molecules (Basel, Switzerland), 28(2), 543. https://doi.org/10.3390/molecules28020543
  • Dene, L., Lauzike, K., Rasiukeviciute, N., Chrapaciene, S., Brazaityte, A., Virsile, A., Vastakaite-Kairiene, V., Miliauskiene, J., Sutuliene, R., Samuoliene, G., & Valiuskaite, A. (2023). Defense response of strawberry plants against Botrytis cinerea influenced by coriander extract and essential oil. Frontiers in Plant Science, 13, 1–10. https://doi.org/10.3389/fpls.2022.1098048
  • Dharmalingam, R., & Nazni, P. (2013). Phytochemical evaluation of Coriandrum L flowers. International Journal of Food and Nutritional Sciences, 2(4), 2320–7876. http:/www.ijfans.com/currentissue.html
  • Drioiche, A., Zahra Radi, F., Ailli, A., Bouzoubaa, A., Boutakiout, A., Mekdad, S., Al Kamaly, O., Saleh, A., Maouloua, M., Bousta, D., Sahpaz, S., El Makhoukhi, F., & Zair, T. (2022). Correlation between the chemical composition and the antimicrobial properties of seven samples of essential oils of endemic thymes in Morocco against multi-resistant bacteria and pathogenic fungi. Saudi Pharmaceutical Journal, 30(8), 1200–1214. https://doi.org/10.1016/j.jsps.2022.06.022
  • Dubale, B., Solomon, A., Geremew, B., Sethumadhava, R., & Waktole, S, Jimma Agricultural Mechanization Research Center. (2014). Mycoflora of grain maize (Zea mays L) stored in traditional storage containers (Gombisa and sacks) in selected Woredas of Jima Zone, Ethiopia. African Journal of Food, Agriculture, Nutrition and Development, 14(62), 8676–8694. https://doi.org/10.18697/ajfand.62.11900
  • Elleuch, L., Shaaban, M., Smaoui, S., Mellouli, L., Karray-Rebai, I., Fourati-Ben Fguira, L., Shaaban, K., & Laatsch, H. (2010). Bioactive secondary metabolites from a new terrestrial streptomyces sp. TN262. Applied Biochemistry and Biotechnology, 162(2), 579–593. https://doi.org/10.1007/s12010-009-8808-4
  • Farias, J. P., Barros, A. L. A. N., de Araújo-Nobre, A. R., Sobrinho-Júnior, E. P. C., Alves, M. M. d M., Carvalho, F. A. d A., da Franca Rodrigues, K. A., de Andrade, I. M., Silva-Filho, F. A. e., Moreira, D. C., Lima, D. F., Lucarini, M., Durazzo, A., Arcanjo, D. D. R., & de Souza de Almeida Leite, J. R. (2023). Influence of plant age on chemical composition, antimicrobial activity and cytotoxicity of Varronia curassavica Jacq. essential oil produced on an industrial scale. Agriculture, 13(2), 373–386. https://doi.org/10.3390/agriculture13020373
  • Ferdosi, M. F. H., Khan, I., Javaid, A., Saeed, H., Butt, I., & Munir, A. (2021). GC-MS analysis and bioactive components of flowers of Bergenia ciliata, a weed of rock crevices in Pakistan. Journal of Weed Science Research, 27(4), 527–535. https://doi.org/10.28941/pjwsr.v27i4.1012
  • Garbaba, C., Diriba, S., Ocho, F., & Hensel, O. (2018). Potential for mycotoxin-producing fungal growth in various agro-ecological settings and maize storage systems in southwestern Ethiopia. Journal of Stored Products Research, 76, 22–29. https://doi.org/10.1016/j.jspr.2017.12.001
  • Gemeda, N., Woldeamanuel, Y., Asrat, D., & Debella, A. (2014). Effect of Cymbopogon martinii, Foeniculum vulgare, and Trachyspermum ammi essential oils on the growth and mycotoxins production by Aspergillus species. International Journal of Food Science, 2014, 874135–874139. https://doi.org/10.1155/2014/874135
  • Getachew, A., Chala, A., Hofgaard, I. S., Brurberg, M. B., Sulyok, M., & Tronsmo, A.-M. (2018). Multimycotoxin and fungal analysis of maize grains from south and southwestern Ethiopia. Food Additives & Contaminants. Part B, Surveillance, 11(1), 64–74. 10.1080/19393210.2017.140869829258380
  • Ghisari, M., & Bonefeld-Jorgensen, E. C. (2009). Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions. Toxicology Letters, 189(1), 67–77. https://doi.org/10.1016/j.toxlet.2009.05.004
  • Gurjar, M. S., Ali, S., Akhtar, M., & Singh, K. S. (2012). Efficacy of plant extracts in plant disease management. Agricultural Sciences, 03(03), 425–433. https://doi.org/10.4236/as.2012.33050
  • Han, B., Fu, G. W., & Wang, J. Q. (2022). Inhibition of essential oils on growth of Aspergillus flavus and aflatoxin B1 production in broth and poultry feed. Toxins, 14(10), 655. https://doi.org/10.3390/toxins14100655
  • Hernández-Ceja, A., Loeza-Lara, P. D., Espinosa-García, F. J., García-Rodríguez, Y. M., Medina-Medrano, J. R., Gutiérrez-Hernández, G. F., & Ceja-Torres, L. F. (2021). In vitro antifungal activity of plant extracts on pathogenic fungi of blueberry (Vaccinium sp.). Plants (Basel, Switzerland), 10(5), 852–864. https://doi.org/10.3390/plants10050852
  • Hu, Y., Zhang, J., Kong, W., Zhao, G., & Yang, M. (2017). Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chemistry, 220, 1–8. https://doi.org/10.1016/j.foodchem.2016.09.179
  • Hudaib, M., & Aburjai, T. (2008). Volatile components of Thymus vulgaris L. from wild‐growing and cultivated plants in Jordan. Flavour and Fragrance Journal, 22(4), 322–327. 10.1002/ffj.1800
  • Hudaib, M., Speroni, E., Di Pietra, A., & Cavrini, V. (2002). GC/MS Evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. Journal of Pharmaceutical and Biomedical Analysis, 29(4), 691–700. https://doi.org/10.1016/S0731-7085(02)00119-X
  • Isa, T., Ozlem, G., & Nermin, S. (2006). Yield, essential oil content and composition of coriandrum sativum varieties (var. Vulgare alef and var. Microcarpum dc.) grown in two different locations. Journal of Essential Oil Research, 18(2), 189–193. https://doi.org/10.1080/10412905.2006.9699063
  • Kačániová, M., Galovičová, L., Ivanišová, E., Vukovic, N. L., Štefániková, J., Valková, V., Borotová, P., Žiarovská, J., Terentjeva, M., Felšöciová, S., & Tvrdá, E. (2020). Antioxidant, antimicrobial and antibiofilm activity of coriander (Coriandrum sativum L.) essential oil for its application in foods. Foods (Basel, Switzerland), 9(3), 282. https://doi.org/10.3390/foods9030282
  • Kesraoui, S., Andrés, M. F., Berrocal-Lobo, M., Soudani, S., & Gonzalez-Coloma, A. (2022). Crop protection. Plants, 11(16), 2144. https://doi.org/10.3390/plants11162144
  • Klich, M. (2002). Identification of Common Aspergillus Species. Centraalbureau voor Schimmelcultures.
  • Leslie, J., & Summerell, B. (2006). The Fusarium Laboratory Manual. Blackwell Publishing. https://doi.org/10.1002/9780470278376
  • Liu, Z., Zhang, G., Zhang, Y., Jin, Q., Zhao, J., & Li, J. (2016). Factors controlling mycotoxin contamination in maize and food in the Hebei province, China. Agronomy for Sustainable Development, 36(2), 1–10. https://doi.org/10.1007/s13593-016-0374-x
  • Mandal, S., & Mandal, M. (2015). Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pacific Journal of Tropical Biomedicine, 5(6), 421–428. https://doi.org/10.1016/j.apjtb.2015.04.001
  • Marín, S., Magan, N., Abellana, M., Canela, R., Ramos, A. J., & Sanchis, V. (2000). Selective effect of propionates and water activity on maize mycoflora and impact on fumonisin B1 accumulation. Journal of Stored Products Research, 36(2), 203–214. https://doi.org/10.1016/S0022-474X(99)00043-0
  • Moges, A., & Moges, Y. (2019). Ethiopian common medicinal plants : Their parts and uses in traditional medicine. Ecology and Quality Control. https://doi.org/10.5772/intechopen.86202
  • Mohammadi, A., Hashemi, H., & Seyed, M. (2015). Comparison of antifungal activities of various essential oils on the Phytophthora drechsleri, the causal agent of fruit decay. Iranian Journal of Microbiology, 7(1), 31–37.
  • Nartey, D., Gyesi, J. N., & Borquaye, L. S. (2021). Chemical composition and biological activities of the essential oils of Chrysophyllum albidum G. Don (African Star Apple). Biochemistry Research International, 2021, 9911713–9911711. https://doi.org/10.1155/2021/9911713
  • Nazzaro, F., Fratianni, F., Coppola, R., & De Feo, V. (2017). Essential oils and antifungal activity. Pharmaceuticals (Basel, Switzerland), 10(4), 86. https://doi.org/10.3390/ph10040086
  • Nigussie, D., Davey, G., Beyenee, T., Beyene, B., Malcolm, L., Belete, A., Fekadu, A., & Makonnen, E. (2021). Antibacterial and antifungal activities of Ethiopian medicinal plants : a systematic review. Frontiers in Pharmacology, 12, 633921. https://doi.org/10.3389/fphar.2021.633921
  • Nurzynska-Wierdak, R. (2013). Essential oil composition of the coriander (Coriandrum sativum L.) herb depending on the development stage. Acta Agrobotanica, 66(1), 53–60. https://doi.org/10.5586/aa.2013.006
  • Oliveira, R. C., Carvajal-Moreno, M., Correa, B., & Rojo-Callejas, F. (2020). Cellular, physiological and molecular approaches to investigate the antifungal and anti-aflatoxigenic effects of thyme essential oil on Aspergillus flavus. Food Chemistry, 315, 126096. https://doi.org/10.1016/j.foodchem.2019.126096
  • Perczak, A., Gwiazdowska, D., Marchwińska, K., Juś, K., Gwiazdowski, R., & Waśkiewicz, A. (2019). Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Archives of Microbiology, 201(8), 1085–1097. https://doi.org/10.1007/s00203-019-01673-5
  • Phuc, N., Thy, L., Lam, T., Yen, V., & Lan, N. (2019). Extraction of jasmine essential oil by hydrodistillation method and applications on formulation of natural facial cleansers. IOP Conference Series: Materials Science and Engineering, 542(1), 012057. https://doi.org/10.1088/1757-899X/542/1/012057
  • Pitt, J., & Hocking, A. (2009). Fungi and food spoilage. (3rd ed.). Springer. https://doi.org/10.1007/978-0-387-92207-2
  • Santos-Gomes, P., & Fernandes-Ferreira, M. (2001). Organ-and season-dependent variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites. Journal of Agricultural and Food Chemistry, 49(6), 2908–2916. https://doi.org/10.1021/jf001102b
  • Satyal, P., Murray, B., McFeeters, R., & Setzer, W. (2016). Essential oil characterization of Thymus vulgaris from various geographical locations. Foods (Basel, Switzerland), 5(4), 70. https://doi.org/10.3390/foods5040070
  • Satyal, P., & Setzer, W. (2020). Chemical compositions of commercial essential oils from Coriandrum sativum fruits and aerial parts. Natural Product Communications, 15(7), 1934578X2093306. https://doi.org/10.1177/1934578X20933067
  • Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action : An updated review. Evidence-Based Complementary and Alternative Medicine, 2016, 3012462–3012421. https://doi.org/10.1155/2016/3012462
  • USDA (United States Department of Agriculture). (2022). World agricultural production. Global Market Anlysis. Circular Series, WAP, 7-23, 59–65. https://doi.org/10.32317/2221-1055.201907059
  • Wang, L., Liu, B., Jin, J., Ma, L., Dai, X., Pan, L., Liu, Y., Zhao, Y., & Xing, F. (2019). The complex essential oils highly control the toxigenic fungal microbiome and major mycotoxins during storage of maize. Frontiers in Microbiology, 10, 1643–1656. https://doi.org/10.3389/fmicb.2019.01643
  • Wei, J., Liu, Z., Zhao, Y., Zhao, L., Xue, T., & Lan, Q. (2019). Phytochemical and bioactive profile of Coriandrum sativum L. Food Chemistry, 286, 260–267. https://doi.org/10.1016/j.foodchem.2019.01.171
  • Xiang, F., Zhao, Q., Zhao, K., Pei, H., & Tao, F. (2020). The efficacy of composite essential oils against Aflatoxigenic fungus Aspergillus flavus in Maize. Toxins, 12(9), 562. https://doi.org/10.3390/toxins12090562
  • Yang, S., He, M., Li, D., Shi, J., Peng, L., & Jinjing, L. (2023). Antifungal activity of 40 plant essential oil components against Diaporthe fusicola from postharvest kiwifruits and their possible action mode. Industrial Crops and Products, 194, 116102. https://doi.org/10.1016/j.indcrop.2022.116102
  • Yilma, S., Sadessa, K., & Kebede, D. (2019). Fungal infections and aflatoxin contamination in maize grains collected from west showa and east wallega zones, ethiopia. International Journal of Current Research and Review, 11(21), 16–22. https://doi.org/10.31782/IJCRR.2019.11213
  • Zieli, M. (2020). Monoterpenes and their derivatives—Recent development in biological and medical applications. International Journal of Molecular Sciences, 21, 7078. https://doi.org/10.3390/ijms21197078