829
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Crops and people: the dangers and potential benefits of pesticides

, , , ORCID Icon, , , , , & show all
Article: 2334096 | Received 13 Nov 2023, Accepted 19 Mar 2024, Published online: 18 Apr 2024

References

  • Abdou, K. (2019). Epidemiology of pesticides in developing countries.
  • Abubakar, Y., Tijjani, H., Egbuna, C., Adetunji, C. O., Kala, S., Kryeziu, T. L., Ifemeje, J. C., & Patrick-Iwuanyanwu, K. C. (2020). Pesticides, history, and classification. In Natural remedies for pest, disease and weed control (pp. 1–24). Elsevier.
  • Alavanja, M. C., & Bonner, M. R. (2012). Occupational pesticide exposures and cancer risk: A review. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 15(4), 238–263. https://doi.org/10.1080/10937404.2012.632358
  • Ali, A., Hussain, F., Attacha, S., Kalsoom, A., Qureshi, W. A., Shakeel, M., Militky, J., Tomkova, B., & Kremenakova, D. (2021). Development of novel antimicrobial and antiviral green synthesized silver nanocomposites for the visual detection of Fe3+ ions. Nanomaterials, 11(8), 2076. https://doi.org/10.3390/nano11082076
  • Amaral, A. F. (2014). Pesticides and asthma: challenges for epidemiology (p. 6). Frontiers Media SA.
  • Andiappan, K., Sanmugam, A., Deivanayagam, E., Karuppasamy, K., Kim, H.-S., & Vikraman, D. (2018). In vitro cytotoxicity activity of novel Schiff base ligand–lanthanide complexes. Scientific Reports, 8(1), 3054. https://doi.org/10.1038/s41598-018-21366-1
  • Asano, S., Yoshida, K., & Hirayama, Y. (2024). Sensitivity of tomato leaf mould–causing Fulvia fulva to seven succinate dehydrogenase inhibitor (SDHI) fungicides in Nara Prefecture, Japan and high efficacy of isofetamid in controlling SDHI‐resistant isolates. Journal of Phytopathology, 172(1), e13243. https://doi.org/10.1111/jph.13243
  • Asiamah, J. Y., Tachie-Menson, J. W., Agyirifo, D. S., Agbeko, R., & Essem, F. (2020). Pesticides; A necessary evil in the agricultural value chain–A review. Sted Journal, 2(1), 53–63. https://doi.org/10.7251/STED2002053Y
  • Ayer, K. M., Villani, S. M., Choi, M.-W., & Cox, K. D. (2019). Characterization of the VisdhC and VisdhD genes in Venturia inaequalis, and sensitivity to fluxapyroxad, pydiflumetofen, inpyrfluxam, and benzovindiflupyr. Plant Disease, 103(6), 1092–1100. https://doi.org/10.1094/PDIS-07-18-1225-RE
  • Bachmann, S. (2018). Epidemiology of suicide and the psychiatric perspective. International Journal of Environmental Research and Public Health, 15(7), 1425. https://doi.org/10.3390/ijerph15071425
  • Bao, H., Meng, X., & Liu, Z. (2017). Spider acetylcholine binding proteins: An alternative model to study the interaction between insect nAchRs and neonicotinoids. Insect Biochemistry and Molecular Biology, 90, 82–89. https://doi.org/10.1016/j.ibmb.2017.09.014
  • Bergamaschi, A., Cavazza, F., & Bugiani, R. (2022). Optimization of copper applications using Laminarine for the sustainable control of grape downy mildew. BIO Web of Conferences, 50, 03005. https://doi.org/10.1051/bioconf/20225003005
  • Bhatt, P., Zhou, X., Huang, Y., Zhang, W., & Chen, S. (2021). Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. Journal of Hazardous Materials, 411, 125026. https://doi.org/10.1016/j.jhazmat.2020.125026
  • Biondi, A., Desneux, N., Siscaro, G., & Zappalà, L. (2012). Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere, 87(7), 803–812. https://doi.org/10.1016/j.chemosphere.2011.12.082
  • Bish, M., Oseland, E., & Bradley, K. (2021). Off-target pesticide movement: A review of our current understanding of drift due to inversions and secondary movement. Weed Technology, 35(3), 345–356. https://doi.org/10.1017/wet.2020.138
  • Blassioli-Moraes, M. C., Laumann, R. A., Michereff, M. F., & Borges, M. (2019). Semiochemicals for integrated pest management. In Sustainable agrochemistry: A compendium of technologies (pp. 85–112). Springer.
  • Bonner, M. R., Freeman, L. E. B., Hoppin, J. A., Koutros, S., Sandler, D. P., Lynch, C. F., Hines, C. J., Thomas, K., Blair, A., & Alavanja, M. C. R. (2017). Occupational exposure to pesticides and the incidence of lung cancer in the agricultural health study. Environmental Health Perspectives, 125(4), 544–551. https://doi.org/10.1289/EHP456
  • Buckley, N. A., Fahim, M., Raubenheimer, J., Gawarammana, I. B., Eddleston, M., Roberts, M. S., & Dawson, A. H. (2021). Case fatality of agricultural pesticides after self-poisoning in Sri Lanka: a prospective cohort study. The Lancet. Global Health, 9(6), e854–e862. https://doi.org/10.1016/S2214-109X(21)00086-3
  • Cai, D. W. (2008). Understand the role of chemical pesticides and prevent misuses of pesticides. Bulletin of Agricultural Science and Technology 1(6), 36–38.
  • Calaf, G. M. (2021). Role of organophosphorous pesticides and acetylcholine in breast carcinogenesis. In Seminars in cancer biology. Elsevier. https://doi.org/10.1016/j.semcancer.2021.03.016
  • Calaf, G. M., Bleak, T. C., & Roy, D. (2021). Signs of carcinogenicity induced by parathion, malathion, and estrogen in human breast epithelial cells. Oncology Reports, 45(4), 1. https://doi.org/10.3892/or.2021.7975
  • Caldas, E. D. (2016). Pesticide poisoning in Brazil. In Reference module in earth systems and environmental sciences. Elsevier.
  • Campagnac, E., Fontaine, J., Lounès-Hadj Sahraoui, A., Laruelle, F., Durand, R., & Grandmougin-Ferjani, A. (2009). Fenpropimorph slows down the sterol pathway and the development of the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza, 19(6), 365–374. https://doi.org/10.1007/s00572-009-0238-1
  • Cantrell, C. L., Dayan, F. E., & Duke, S. O. (2012). Natural products as sources for new pesticides. Journal of Natural Products, 75(6), 1231–1242. https://doi.org/10.1021/np300024u
  • Cavoski, I., Caboni, P., & Miano, T. (2011). Natural pesticides and future perspectives. In Pesticides in the modern world-pesticides use and management (pp. 169–190). CBS Publishers & Distributors Pvt. Ltd.
  • Cernuschi, M., Avidor, Y., & Rosenmund, A. (2023). Fungicidal mixtures. Google Patents.
  • Chen, J., Lin, G., & Zhou, B.-S. (2004). Correlation between pesticides exposure and morbidity and mortality of breast cancer. Chinese Journal of Public Health, 20, 289–290.
  • Chen, S., Daly, P., Zhou, D., Li, J., Wang, X., Deng, S., Feng, H., Wang, C., Sheikh, T. M. M., Chen, Y., Xue, T., Cai, F., Kubicek, C. P., Wei, L., & Druzhinina, I. S. (2022). The use of mutant and engineered microbial agents for biological control of plant diseases caused by Pythium: Achievements versus challenges. Fungal Biology Reviews, 40, 76–90. https://doi.org/10.1016/j.fbr.2022.03.001
  • Chiasson, H., Vincent, C., & Bostanian, N. (2004). Insecticidal properties of a Chenopodium-based botanical. Journal of Economic Entomology, 97(4), 1378–1383. https://doi.org/10.1093/jee/97.4.1378
  • Čokl, A. A., & Millar, J. G. (2009). Manipulation of insect signaling for monitoring and control of pest insects. Springer.
  • Cordova, D., Benner, E. A., Sacher, M. D., Rauh, J. J., Sopa, J. S., Lahm, G. P., Selby, T. P., Stevenson, T. M., Flexner, L., Gutteridge, S., Rhoades, D. F., Wu, L., Smith, R. M., & Tao, Y. (2006). Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pesticide Biochemistry and Physiology, 84(3), 196–214. https://doi.org/10.1016/j.pestbp.2005.07.005
  • Dayan, F. E., Owens, D. K., Corniani, N., Silva, F. M. L., Watson, S. B., Howell, J., & Shaner, D. L. (2015). Biochemical markers and enzyme assays for herbicide mode of action and resistance studies. Weed Science, 63(SP1), 23–63. https://doi.org/10.1614/WS-D-13-00063.1
  • Debnath, N., Das, S., Seth, D., Chandra, R., Bhattacharya, S. C., & Goswami, A. (2011). Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pest Science, 84(1), 99–105. https://doi.org/10.1007/s10340-010-0332-3
  • del Pilar Navarrete-Meneses, M., & Pérez-Vera, P. (2019). Pyrethroid pesticide exposure and hematological cancer: epidemiological, biological and molecular evidence. Reviews on Environmental Health, 34(2), 197–210. https://doi.org/10.1515/reveh-2018-0070
  • Diaz, J. H. (2016). Chemical and plant-based insect repellents: Efficacy, safety, and toxicity. Wilderness & Environmental Medicine, 27(1), 153–163. https://doi.org/10.1016/j.wem.2015.11.007
  • Dixit, S., Srivastava, M., & Sharma, Y. (2018). Pesticide-and-human-health–A-rising-concern-of-the-21st-century (pp. 85–104). IGI Global.
  • Eddleston, M., Eyer, P., Worek, F., Mohamed, F., Senarathna, L., von Meyer, L., Juszczak, E., Hittarage, A., Azhar, S., Dissanayake, W., Sheriff, M. H. R., Szinicz, L., Dawson, A. H., & Buckley, N. A. (2005). Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study. Lancet, 366(9495), 1452–1459. https://doi.org/10.1016/S0140-6736(05)67598-8
  • El-Naggar, M. E., Abdelsalam, N. R., Fouda, M. M. G., Mackled, M. I., Al-Jaddadi, M. A. M., Ali, H. M., Siddiqui, M. H., & Kandil, E. E. (2020). Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials, 10(4), 739. https://doi.org/10.3390/nano10040739
  • Erba, P. A., Roberto, B. (2019). Hybrid imaging and radionuclide therapy in hemato-oncology. In Nuclear medicine textbook: Methodology and clinical applications (pp. 655–705).
  • Fan, L. J. R. N. (2017). China founds pesticide office to combat pollution, overuse. 7, 2017. https://chinadialogue.net/en/pollution/10148-china-founds-pesticide-office-to-combat-pollution-overuse/.
  • Fluegge, K. (2017). Overlooking relevant confounders in the assessment of pesticides and human health: a reply to Mostafalou and Abdollahi. Archives of Toxicology, 91(2), 601–602. https://doi.org/10.1007/s00204-016-1919-0
  • Gerry, A., & Murillo, A. (2019). Promoting biosecurity through insect management at animal facilities. In Biosecurity in animal production and veterinary medicine: From principles to practice (pp. 243–281). CABI Wallingford UK.
  • Ghimire, R., Utyasheva, L., Pokhrel, M., Rai, N., Chaudhary, B., Prasad, P. N., Bajracharya, S. R., Basnet, B., Das, K. D., Pathak, N. K., Baral, M. P., Pande, R., Paudel, P., Shrestha, S. K., Bajracharya, S., Chaudhary, R., Malla, G. B., Sharma, D. R., Basnyat, B., Maskey, M. K., & Eddleston, M. (2022). Intentional pesticide poisoning and pesticide suicides in Nepal. Clinical Toxicology, 60(1), 46–52. https://doi.org/10.1080/15563650.2021.1935993
  • Golubev, A. (2022). Directions for improvement of the herbicide assortment in Russia at the beginning of the 21st century. Plant Protection News, 105(3), 104–113. https://doi.org/10.31993/2308-6459-2022-105-15392
  • Goobie, G. C., Bernatsky, S., Ramsey-Goldman, R., & Clarke, A. E. (2015). Malignancies in systemic lupus erythematosus–A 2015 update. Current Opinion in Rheumatology, 27(5), 454–460. https://doi.org/10.1097/BOR.0000000000000202
  • Goulson, D. (2013). An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50(4), 977–987. https://doi.org/10.1111/1365-2664.12111
  • Gu, S. Y., Lee, H. S., Park, J.-S., Lee, S. J., Shin, H.-S., Kang, S. E., Chung, Y. M., Choi, H. N., Yoon, S. S., Jung, Y.-H., & Yoon, H. J. (2021). Determination and validation of an analytical method for dichlobentiazox in agricultural products with LC-MS/MS. Korean Journal of Environmental Agriculture, 40(2), 108–117. https://doi.org/10.5338/KJEA.2021.40.2.13
  • Hagiwara, H., Ezaki, R., Hamada, T., Tsuda, M., & Ebihara, K. (2019). Development of a novel fungicide, tolprocarb. Journal of Pesticide Science, 44(3), 208–213. https://doi.org/10.1584/jpestics.J19-01
  • Hassaan, M. A., & El Nemr, A. (2020). Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. The Egyptian Journal of Aquatic Research, 46(3), 207–220. https://doi.org/10.1016/j.ejar.2020.08.007
  • Hassan, A. S. (2019). Inorganic-based pesticides: A review article. Egyptian Scientific Journal of Pesticides, 5, 39–52.
  • Hatamoto, M., Aizawa, R., Koda, K., & Fukuchi, T. (2021). Aminopyrifen, a novel 2-aminonicotinate fungicide with a unique effect and broad-spectrum activity against plant pathogenic fungi. Journal of Pesticide Science, 46(2), 198–205. https://doi.org/10.1584/jpestics.D20-094
  • Heo, Y.-J., Kwak, S.-Y., Sarker, A., Lee, S.-H., Choi, J.-W., Oh, J.-E., Abdulkareem, L., & Kim, J.-E. (2023). Uptake and translocation of fungicide picarbutrazox in greenhouse cabbage: the significance of translocation factors and home processing. Environmental Science and Pollution Research International, 30(14), 40919–40930. https://doi.org/10.1007/s11356-022-25087-x
  • Hillebrand, S., Tietjen, K., & Zundel, J. L. (2019). Fungicides with unknown mode of action. Modern Crop Protection Compounds, 2, 911–932.
  • Hoppin, J. A., Umbach, D. M., London, S. J., Henneberger, P. K., Kullman, G. J., Alavanja, M. C. R., & Sandler, D. P. (2008). Pesticides and atopic and nonatopic asthma among farm women in the agricultural health study. American Journal of Respiratory and Critical Care Medicine, 177(1), 11–18. https://doi.org/10.1164/rccm.200706-821OC
  • Hossain, L., Rahman, R., & Khan, M. S. (2017). Alternatives of pesticides. In Pesticide residue in foods (pp. 147–165). Springer.
  • Hou, R., Zhang, Z., Pang, S., Yang, T., Clark, J. M., & He, L. (2016). Alteration of the nonsystemic behavior of the pesticide ferbam on tea leaves by engineered gold nanoparticles. Environmental Science & Technology, 50(12), 6216–6223. https://doi.org/10.1021/acs.est.6b01336
  • Hyder, M. S., Dutta, S. D., Ganguly, K., & Lim, K. T. (2021). Chapter 4 – Are CRISPR/Cas9 and RNA interference-based new technologies to relocate crop pesticides? In K. A. Abd-Elsalam & K.-T. Lim (Eds.), CRISPR and RNAi systems (pp. 47–63). Elsevier.
  • Ibáñez, M. D., Sanchez-Ballester, N. M., & Blázquez, M. A. (2020). Encapsulated Limonene: A pleasant lemon-like aroma with promising application in the agri-food industry. A review. Molecules, 25(11), 2598. https://doi.org/10.3390/molecules25112598
  • Ibrahim, M. A., Kainulainen, P., & Aflatuni, A. (2001). Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for control of insect pests. Agricultural and Food Science, 10(3), 243–259. https://doi.org/10.23986/afsci.5697
  • Ignatieva, M., Haase, D., Dushkova, D., & Haase, A. (2020). Lawns in cities: From a globalised urban green space phenomenon to sustainable nature-based solutions. Land, 9(3), 73. https://doi.org/10.3390/land9030073
  • Iqbal, T., Ahmed, N., Shahjeer, K., Ahmed, S., Al-Mutairi, K. A., Khater, H. F., & Ali, R. F. (2021). Botanical insecticides and their potential as anti-insect/pests: Are they successful against insects and pests? In Global decline of insects. IntechOpen.
  • Islam, M. S., & Morshed, A. (2013). Study on homemade bio-pesticides and organic pest management in organic farming. The International Journal of Engineering and Science, 2(7), 18–25.
  • Islam, M., & Morshed, A. (2013). Study on homemade bio-pesticides and organic pest management in organic farming.
  • Isman, M. B., & Miresmailli, S. (2011). Plant essential oils as repellents and deterrents to agricultural pests. In Recent developments in invertebrate repellents (pp. 67–77). American Chemical Society.
  • Ito, H., Takada, T., Morimoto, M., Komai, H., Kajino, F., Ohara, T., Tamagawa, Y., Tsuda, M., & Banba, S. (2023). Design and biological activity of a novel fungicide, quinofumelin. Journal of Pesticide Science, 48(1), 22–27. https://doi.org/10.1584/jpestics.D22-042
  • Jactel, H., Verheggen, F., Thiéry, D., Escobar-Gutiérrez, A. J., Gachet, E., & Desneux, N. (2019). Alternatives to neonicotinoids. Environment International, 129, 423–429. https://doi.org/10.1016/j.envint.2019.04.045
  • Jayakody, N., Harris, E. C., & Coggon, D. (2015). Phenoxy herbicides, soft-tissue sarcoma and non-Hodgkin lymphoma: A systematic review of evidence from cohort and case–control studies. British Medical Bulletin, 114(1), 75–94. https://doi.org/10.1093/bmb/ldv008
  • Jeschke, P. (2021). Status and outlook for acaricide and insecticide discovery. Pest Management Science, 77(1), 64–76. https://doi.org/10.1002/ps.6084
  • Jones, A. K., & Sattelle, D. B. (2010). Diversity of insect nicotinic acetylcholine receptor subunits. Advances in Experimental Medicine and Biology, 683, 25–43.
  • Kabtni, S., Sdouga, D., Bettaib Rebey, I., Save, M., Trifi-Farah, N., Fauconnier, M.-L., & Marghali, S. (2020). Influence of climate variation on phenolic composition and antioxidant capacity of Medicago minima populations. Scientific Reports, 10(1), 8293. https://doi.org/10.1038/s41598-020-65160-4
  • Kamaruzaman, N. A., Leong, Y.-H., Jaafar, M. H., Mohamed Khan, H. R., Abdul Rani, N. A., Razali, M. F., & Abdul Majid, M. I. (2020). Epidemiology and risk factors of pesticide poisoning in Malaysia: A retrospective analysis by the National Poison Centre (NPC) from 2006 to 2015. BMJ Open, 10(6), e036048. https://doi.org/10.1136/bmjopen-2019-036048
  • Karunarathne, A., Gunnell, D., Konradsen, F., & Eddleston, M. (2020). How many premature deaths from pesticide suicide have occurred since the agricultural Green Revolution? Clinical Toxicology, 58(4), 227–232. https://doi.org/10.1080/15563650.2019.1662433
  • Khursheed, A., Rather, M. A., Jain, V., Wani, A. R., Rasool, S., Nazir, R., Malik, N. A., & Majid, S. A. (2022). Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microbial Pathogenesis, 173(Pt A), 105854. https://doi.org/10.1016/j.micpath.2022.105854
  • Kimura, N., Hashizume, M., Kusaba, T., & Tanaka, S. (2017). Development of the novel fungicide fenpyrazamine. Journal of Pesticide Science, 42(3), 137–143. https://doi.org/10.1584/jpestics.J17-01
  • Kramer, W., Buchel, K. J. J. W., & Sons, N. Y. (1983). Chemistry of pesticides (pp. 280–281). The New York Academy of Sciences.
  • Kumar, J. I. N., Bora, A., Kumar, R. N., Amb, M. K., & Khan, S. (2013). Toxicity analysis of pesticides on cyanobacterial species by 16S rDNA molecular characterization. Proceedings of the International Academy of Ecology and Environmental Sciences, 3(2), 101.
  • Kumar, J., Ramlal, A., Mallick, D., & Mishra, V. (2021). An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants, 10(6), 1185. https://doi.org/10.3390/plants10061185
  • L’Héritier, F., Marques, M., Fauteux, M., Fauteux, M., & Gaudreau, L. (2014). Defining molecular sensors to assess long-term effects of pesticides on carcinogenesis. International Journal of Molecular Sciences, 15(9), 17148–17161.
  • Lee, J. H., & Kim, Y. C. (2022). Strobilurin fungicides activate plant defense against viral and bacterial infections and improve plant vigor. Journal of Plant Diseases and Protection, 129(5), 1031–1040. https://doi.org/10.1007/s41348-022-00629-0
  • Lee, S.-K., Rhee, J. S., Jung, J. M., & Lee, H. S. (2010). Pesticide poisoning deaths detected at the National Forensic Service Headquarters in Seoul of Korea: A five-year survey (2005–2009). Environmental Analysis Health and Toxicology, 25(4), 263–271.
  • Lee, Y. Y., Chisholm, D., Eddleston, M., Gunnell, D., Fleischmann, A., Konradsen, F., Bertram, M. Y., Mihalopoulos, C., Brown, R., Santomauro, D. F., Schess, J., & van Ommeren, M. (2021). The cost-effectiveness of banning highly hazardous pesticides to prevent suicides due to pesticide self-ingestion across 14 countries: an economic modelling study. The Lancet. Global Health, 9(3), e291–e300. https://doi.org/10.1016/S2214-109X(20)30493-9
  • Liu, C., Men W., Liu Y., & Zhang H. (2002). The pollution of pesticides in soils and its bioremediation. System Sciences and Comprehensive Studies in Agriculture, 18(4), 295–297.
  • Liu, Y., Lan, Z., Yin, Y., Liu, N. H., & Tong, Y. (2021). Trends in suicide rates and the case-fatality of pesticide self-poisoning in an agricultural county in China, 2009 to 2014. Journal of Affective Disorders, 283, 52–59. https://doi.org/10.1016/j.jad.2021.01.024
  • Lushchak, V. I., Matviishyn, T. M., Husak, V. V., Storey, J. M., & Storey, K. B. (2018). Pesticide toxicity: A mechanistic approach. EXCLI Journal, 17, 1101.
  • Ma, W., & Zheng, H. (2022). Heterogeneous impacts of information technology adoption on pesticide and fertiliser expenditures: Evidence from wheat farmers in China. Australian Journal of Agricultural and Resource Economics, 66(1), 72–92. https://doi.org/10.1111/1467-8489.12446
  • Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., Hakeem, K. R. (2016). Effects of pesticides on environment. In Plant, soil and microbes (pp. 253–269). Springer.
  • Malyan, S. K., Singh, R., Rawat, M., Kumar, M., Pugazhendhi, A., Kumar, A., Kumar, V., & Kumar, S. S. (2019). An overview of carcinogenic pollutants in groundwater of India. Biocatalysis and Agricultural Biotechnology, 21, 101288. https://doi.org/10.1016/j.bcab.2019.101288
  • Manna, M. C., Rahman, M. M., Naidu, R., Bari, A. F., Singh, A., Thakur, J., Ghosh, A., Patra, A. K., Chaudhari, S., & Subbarao, A. (2021). Organic farming: A prospect for food, environment and livelihood security in Indian agriculture. Advances in Agronomy, 170, 101–153.
  • Mehrpour, O., Jafarzadeh, M., & Abdollahi, M. (2012). A systematic review of aluminium phosphide poisoning. Arhiv za Higijenu Rada i Toksikologiju, 63(1), 61–73. https://doi.org/10.2478/10004-1254-63-2012-2182
  • Mew, E. J., Padmanathan, P., Konradsen, F., Eddleston, M., Chang, S.-S., Phillips, M. R., & Gunnell, D. (2017). The global burden of fatal self-poisoning with pesticides 2006–2015: Systematic review. Journal of Affective Disorders, 219, 93–104. https://doi.org/10.1016/j.jad.2017.05.002
  • Mfarrej, M. F. B., & Rara, F. M. (2019). Competitive, sustainable natural pesticides. Acta Ecologica Sinica, 39(2), 145–151. https://doi.org/10.1016/j.chnaes.2018.08.005
  • Mie, A., Andersen, H. R., Gunnarsson, S., Kahl, J., Kesse-Guyot, E., Rembiałkowska, E., Quaglio, G., & Grandjean, P. (2017). Human health implications of organic food and organic agriculture: A comprehensive review. Environmental Health, 16(1), 1–22. https://doi.org/10.1186/s12940-017-0315-4
  • Miligi, L., Costantini, A. S., Veraldi, A., Benvenuti, A., & Vineis, P. (2006). Cancer and pesticides: An overview and some results of the Italian multicenter case–control study on hematolymphopoietic malignancies. Annals of the New York Academy of Sciences, 1076(1), 366–377. https://doi.org/10.1196/annals.1371.036
  • Moorthy, P. (2018). Strengthening integrated pest management (IPM) for sustainable organic horticulture production. Sustainable Horticulture Development and Nutrition Security, 3, 250.
  • Mostafalou, S., & Abdollahi, M. (2017). Pesticides: An update of human exposure and toxicity. Archives of Toxicology, 91(2), 549–599. https://doi.org/10.1007/s00204-016-1849-x
  • Mursiti, S., Lestari, N. A., Febriana, Z., Rosanti, Y. M., & Ningsih, T. W. (2019). The activity of D-limonene from sweet orange peel (Citrus sinensis L.) extract as a natural insecticide controller of bedbugs (Cimex cimicidae). Oriental Journal of Chemistry, 35(4), 1420–1425. https://doi.org/10.13005/ojc/350424
  • Naeem, M., Jimenez Bremont, J. F., Ansari, A. A., Gill, S. S. (2022). Agrochemicals in soil and environment: impacts and remediation. Springer Nature.
  • Nair, P. A., & Sujatha, C. (2012). Organic pollutants as endocrine disruptors: organometallics, PAHs, organochlorine, organophosphate and carbamate insecticides, phthalates, dioxins, phytoestrogens, alkyl phenols and bisphenol A. In Environmental chemistry for a sustainable world: Volume 1: Nanotechnology and health risk (pp. 259–309). Springer.
  • Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148–148. https://doi.org/10.3389/fpubh.2016.00148
  • Niemeyer, J. C., Chelinho, S., & Sousa, J. P. (2017). Soil ecotoxicology in Latin America: Current research and perspectives. Environmental Toxicology and Chemistry, 36(7), 1795–1810. https://doi.org/10.1002/etc.3792
  • Nuruzzaman, M., Rahman, M. M., Liu, Y., & Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of Agricultural and Food Chemistry, 64(7), 1447–1483. https://doi.org/10.1021/acs.jafc.5b05214
  • Oberemok, V. V., & Skorokhod, O. A. (2014). Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control. Pesticide Biochemistry and Physiology, 113, 1–7. https://doi.org/10.1016/j.pestbp.2014.05.005
  • Oberemok, V. V., Laikova, K. V., Gninenko, Y. I., Zaitsev, A. S., Nyadar, P. M., & Adeyemi, T. A. (2015). A short history of insecticides. Journal of Plant Protection Research, 55(3), 221–226. https://doi.org/10.1515/jppr-2015-0033
  • Oberemok, V. V., Laikova, K. V., Zaitsev, A. S., Nyadar, P. M., Shumskykh, M. N., & Gninenko, Y. I. (2015). DNA insecticides based on IAP3 gene fragments of cabbage looper and gypsy moth nuclear polyhedrosis viruses show selectivity for non-target insects. Archives of Biological Sciences, 67(3), 785–792. https://doi.org/10.2298/ABS141230037O
  • Oberemok, V., & Nyadar, P. (2016). DNA insecticides.
  • Ogawa, M., Nishimura, A., Abe, Y., Fukumori, Y., Suzuki, K., & Mitani, S. (2023). Fungicidal spectrum and biological properties of a new fungicide, pyriofenone. Journal of Pesticide Science, 48(2), 65–70. https://doi.org/10.1584/jpestics.D22-068
  • Pandya, I. Y. (2018). Pesticides and their applications in agriculture. Asian Journal of Applied Science and Technology, 2(2), 894–900.
  • Parker, K. M., & Sander, M. (2017). Environmental fate of insecticidal plant-incorporated protectants from genetically modified crops: Knowledge gaps and research opportunities. Environmental Science & Technology, 51(21), 12049–12057. https://doi.org/10.1021/acs.est.7b03456
  • Parmar, P., Rathod, G. B., Rathod, S., Parikh, A. (2015). Demographic profile of aluminium phosphide poisoning in Gandhinagar, Gujarat. International Archives of Integrated Medicine, 2(1), 76–82.
  • Parween, T., & Jan, S. (2019). Chapter 1 – Pesticides and environmental ecology. In T. Parween & S. Jan (Eds.), Ecophysiology of pesticides (pp. 1–38). Academic Press.
  • Parween, T., & Jan, S. (2019). Ecophysiology of pesticides: Interface between pesticide chemistry and plant physiology. Academic Press.
  • Pathania, D., Thakur, M., & Sharma, A. (2020). Photocatalytical degradation of pesticides. In Nano-materials as photocatalysts for degradation of environmental pollutants (pp. 153–172). Elsevier.
  • Pedroso, T. M. A., Benvindo-Souza, M., de Araújo Nascimento, F., Woch, J., dos Reis, F. G., & de Melo e Silva, D. (2022). Cancer and occupational exposure to pesticides: A bibliometric study of the past 10 years. Environmental Science and Pollution Research, 29(12), 17464–17475. https://doi.org/10.1007/s11356-021-17031-2
  • Pelaez, V., da Silva, L. R., & Araujo, E. B. (2013). Regulation of pesticides: A comparative analysis. Science and Public Policy, 40(5), 644–656. https://doi.org/10.1093/scipol/sct020
  • Peshin, R., & Zhang, W. (2014). Integrated pest management and pesticide use. In D. Pimentel & R. Peshin (Eds.), Integrated pest management: Pesticide problems (Vol. 3, pp. 1–46). Springer Netherlands.
  • Peshin, R., Bandral, R. S., Zhang, W. J., Wilson, L., Dhawan, A. K. (2009). Integrated pest management: a global overview of history, programs and adoption (pp. 1–49). Springer.
  • Pettis, G. V., Braman, S. K., Guillebeau, L. P., & Sparks, B. (2005). Evaluation of insecticides for suppression of Japanese beetle, Popillia japonica Newman, and crapemyrtle aphid, Tinocallis kahawaluokalani Kirkaldy. Journal of Environmental Horticulture, 23(3), 145–148. https://doi.org/10.24266/0738-2898-23.3.145
  • Pielke, R.Jr., & Linnér, B.-O. (2019). From green revolution to green evolution: A critique of the political myth of averted famine. Minerva, 57(3), 265–291. https://doi.org/10.1007/s11024-019-09372-7
  • Pimentel, D. (2009). Pesticides and pest control. In Integrated pest management: innovation-development process (pp. 83–87). Springer.
  • Pimentel, D., & Greiner, A. (1997). Environmental and socio-economics impacts of pesticida use (pp. 51–78). John Wiley & Sons.
  • Rajamani, M., & Negi, A. (2021). Biopesticides for pest management. In Sustainable bioeconomy: Pathways to sustainable development goals (pp. 239–266). Springer.
  • Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, 124657. https://doi.org/10.1016/j.jclepro.2020.124657
  • Rao, J. C. S., Neelima, P., & Rao, K. G. (2017). A review on the toxicity and other effects of Dichlorvos, an organophosphate pesticide to the freshwater fish. Bioscience Discovery, 8(3), 402–415.
  • Rashid, B., Husnain, T., & Riazuddin, S. (2010). Herbicides and pesticides as potential pollutants: a global problem. Plant Adaptation and Phytoremediation, 427–447.
  • Rather, M. I., Khan, T. A., & Farooqi, I. (2022). Assessment of environmental impacts of pesticides: Evidence from meta-analysis. In Towards sustainable natural resources: Monitoring and managing ecosystem biodiversity (pp. 235–252). Springer.
  • Rathore, H. S., Mittal, S., & Nollet, L. (2015). Biochemical pesticides (p. 155). Taylor and Francis.
  • Rawat, N. S., Lathwal, S. S., Panchbhai, G. J., Pal, R. K., Jha, A. K., Jamra, M. S. (2020). Physical, microbial and biochemical composition of bio-pesticides based on cow urine and dung with medicinal plants. Journal of Pharmacognosy and Phytochemistry, 9(5S), 754–758.
  • Reichenberger, S., Bach, M., Skitschak, A., & Frede, H.-G. (2007). Mitigation strategies to reduce pesticide inputs into ground-and surface water and their effectiveness; A review. The Science of the Total Environment, 384(1–3), 1–35. https://doi.org/10.1016/j.scitotenv.2007.04.046
  • Relyea, R. A. (2012). New effects of Roundup on amphibians: Predators reduce herbicide mortality; herbicides induce antipredator morphology. Ecological Applications, 22(2), 634–647. https://doi.org/10.1890/11-0189.1
  • Salas, S. E., Shepherd, C. P., Ngugi, H. K., & Genet, J.-L. (2019). Disease control attributes of oxathiapiprolin fungicides for management of cucurbit downy mildew. Plant Disease, 103(11), 2812–2820. https://doi.org/10.1094/PDIS-02-19-0396-RE
  • Saleem, H., & Zaidi, S. J. (2020). Recent developments in the application of nanomaterials in agroecosystems. Nanomaterials, 10(12), 2411. https://doi.org/10.3390/nano10122411
  • Sanahuja, G., Banakar, R., Twyman, R. M., Capell, T., & Christou, P. (2011). Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnology Journal, 9(3), 283–300. https://doi.org/10.1111/j.1467-7652.2011.00595.x
  • Saranya, S., Selvi, A., Babujanarthanam, R., Rajasekar, A., & Madhavan, J. (2020). Insecticidal activity of nanoparticles and mechanism of action. In Model organisms to study biological activities and toxicity of nanoparticles (pp. 243–266). Springer.
  • Sarker, S., Akbor, M. A., Nahar, A., Hasan, M., Islam, A. R. M. T., & Siddique, M. A. B. (2021). Level of pesticides contamination in the major river systems: A review on South Asian countries perspective. Heliyon, 7(6), e07270. https://doi.org/10.1016/j.heliyon.2021.e07270
  • Sarmah, A. K., Müller, K., & Ahmad, R. (2004). Fate and behaviour of pesticides in the agroecosystem—A review with a New Zealand perspective. Soil Research, 42(2), 125–154. https://doi.org/10.1071/SR03100
  • Sarwar, M. (2016). Inorganic insecticides used in landscape settings and insect pests. Chemistry Research Journal, 1(1), 50–57.
  • Sautua, F. J., & Carmona, M. A. (2022). Baseline sensitivity of QoI-resistant isolates of Pyrenophora tritici-repentis from Argentina to fenpicoxamid. European Journal of Plant Pathology, 164(4), 583–591. https://doi.org/10.1007/s10658-022-02582-y
  • Saw, G., Nagdev, P., Jeer, M., & Murali-Baskaran, R. K. (2023). Silica nanoparticles mediated insect pest management. Pesticide Biochemistry and Physiology, 194, 105524. https://doi.org/10.1016/j.pestbp.2023.105524
  • Saxena, S. (2021). An analysis of effects of pesticides on environment.
  • Semu, E., Tindwa, H., & Singh, B. (2019). Heavy metals and organopesticides: Ecotoxicology, health effects and mitigation options with emphasis on Sub-Saharan Africa. Toxicology: Current Research, 3(1), 1–14. https://doi.org/10.24966/TCR-3735/100010
  • Shaffer, L. (2020). Inner workings: RNA-based pesticides aim to get around resistance problems. Proceedings of the National Academy of Sciences of the United States of America, 117(52), 32823–32826. https://doi.org/10.1073/pnas.2024033117
  • Shah, M. A., Wani, S. H., & Khan, A. A. (2016). Nanotechnology and insecticidal formulations. Journal of Food Bioengineering and Nanoprocessing, 1(3), 285–310.
  • Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., & Thukral, A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1(11), 1446. https://doi.org/10.1007/s42452-019-1485-1
  • Sheridan, K. (2017). Bee-harming pesticides in 75 percent of honey worldwide: Study. phys.org
  • Sherwani, S. I., Arif, I. A., & Khan, H. A. (2015). Modes of action of different classes of herbicides. In Herbicides, physiology of action, and safety (pp. 165–186). Intech Open.
  • Shorey, H. H. (1973). Behavioral responses to insect pheromones. Annual Review of Entomology, 18(1), 349–380. https://doi.org/10.1146/annurev.en.18.010173.002025
  • Silver, K., Cooper, A. M., & Zhu, K. Y. (2021). Strategies for enhancing the efficiency of RNA interference in insects. Pest Management Science, 77(6), 2645–2658. https://doi.org/10.1002/ps.6277
  • So, K., Takuya, I., Yuichi, M., Fukumatsu, I., & Hiroshi, S. (2021). Discovery and biological profile of inpyrfluxam: A new broad-spectrum succinate dehydrogenase inhibitor fungicide. In Recent highlights in the discovery and optimization of crop protection products (pp. 381–389). Elsevier.
  • Sodnikar, K., Parker, K. M., Stump, S. R., ThomasArrigo, L. K., & Sander, M. (2021). Adsorption of double-stranded ribonucleic acids (dsRNA) to iron (oxyhydr-) oxide surfaces: comparative analysis of model dsRNA molecules and deoxyribonucleic acids (DNA). Environmental Science: Processes & Impacts, 23(4), 605–620.
  • Sparks, T. C., & Bryant, R. J. (2022). Innovation in insecticide discovery: Approaches to the discovery of new classes of insecticides. Pest Management Science, 78(8), 3226–3247. https://doi.org/10.1002/ps.6942
  • Stehle, S., & Schulz, R. (2015). Pesticide authorization in the EU—Environment unprotected? Environmental Science and Pollution Research International, 22(24), 19632–19647. https://doi.org/10.1007/s11356-015-5148-5
  • Stenzel, K., & Vors, J. P. (2019). Sterol biosynthesis inhibitors. Modern Crop Protection Compounds, 2, 797–844.
  • Syberg, K., & Hansen, S. F. (2016). Environmental risk assessment of chemicals and nanomaterials—The best foundation for regulatory decision-making? The Science of the Total Environment, 541, 784–794. https://doi.org/10.1016/j.scitotenv.2015.09.112
  • Teixeira, L. A., & Andaloro, J. T. (2013). Diamide insecticides: Global efforts to address insect resistance stewardship challenges. Pesticide Biochemistry and Physiology, 106(3), 76–78. https://doi.org/10.1016/j.pestbp.2013.01.010
  • Tsao, R., Peterson, C. J., & Coats, J. R. (2002). Glucosinolate breakdown products as insect fumigants and their effect on carbon dioxide emission of insects. BMC Ecology, 2(1), 5. https://doi.org/10.1186/1472-6785-2-5
  • Umetsu, N., & Shirai, Y. (2020). Development of novel pesticides in the 21st century. Journal of Pesticide Science, 45(2), 54–74. https://doi.org/10.1584/jpestics.D20-201
  • Valavanidis, A. (2018). Neonicotinoid insecticides. Banned by the European Union in 2018 after scientific studies concluded their use harm honey bees (Vol. 1). Scientific Reviews.
  • Verma, N., & Bhardwaj, A. (2015). Biosensor technology for pesticides—A review. Applied Biochemistry and Biotechnology, 175(6), 3093–3119. https://doi.org/10.1007/s12010-015-1489-2
  • Vimala Devi, P. S., Duraimurugan, P., & Chandrika, K. S. V. P. (2019). Chapter 10 – Bacillus thuringiensis-based nanopesticides for crop protection. In O. Koul (Ed.). Nano-biopesticides today and future perspectives (pp. 249–260). Academic Press.
  • Wang, K., Cheng, H., Chen, J., Zhu, G., Tang, P., & Han, Z. (2021). Chimeric double-stranded RNAs could act as tailor-made pesticides for controlling storage insects. Journal of Agricultural and Food Chemistry, 69(22), 6166–6171. https://doi.org/10.1021/acs.jafc.1c00853
  • Wang, Y., Zhang, H., Li, H., & Miao, X. (2011). Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLOS One, 6(4), e18644. https://doi.org/10.1371/journal.pone.0018644
  • Wang, Z., Lv, X., Wang, R., He, Z., Feng, W., Liu, W., Yang, C., Wang, Z., Ke, Q., Tao, K., & Chen, Q. (2023). Use of oxathiapiprolin for controlling soybean root rot caused by Phytophthora sojae: Efficacy and mechanism of action. Pest Management Science, 79(1), 381–390. https://doi.org/10.1002/ps.7207
  • Wesseling, C., Corriols, M., & Bravo, V. (2005). Acute pesticide poisoning and pesticide registration in Central America. Toxicology and Applied Pharmacology, 207(2 Suppl), 697–705. https://doi.org/10.1016/j.taap.2005.03.033
  • Witzgall, P., Kirsch, P., & Cork, A. (2010). Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36(1), 80–100. https://doi.org/10.1007/s10886-009-9737-y
  • Wojciechowska, M., Stepnowski, P., & Gołębiowski, M. (2016). The use of insecticides to control insect pests. Invertebrate Survival Journal, 13(1), 210–220.
  • Yadav, I. C., & Devi, N. L. (2017). Pesticides classification and its impact on human and environment. Environmental Science and Engineering, 6, 140–158.
  • Yalçın, M. (2023). Pheromone-based techniques in sustainable pest management.
  • Yao, C., & Mathieson, J. T. (2023). Synergistic mixtures for fungal control in cereals. Google Patents.
  • Zhang, W. (2018a). Global pesticide use: Profile, trend, cost/benefit and more. International Academy of Ecology and Environmental Sciences, 8(1), 1.
  • Zhang, W. J. N. (2018b). A long-term trend of cancer-induced deaths in European countries. Network Pharmacology, 3(1–2), 1–9.
  • Zhang, W., Bai, C., & Liu, G. (2007). A longer-term forecast on global supply and demand of food products (Vol. 5). Journal of Food, Agriculture & Environment.
  • Zhang, W. J., Jiang, F. B., Ou, J. F. (2011). Global pesticide consumption and pollution: With China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences1(2), 125.
  • Zhang, W., Jiang, F., & Ou, J. (2011). Global pesticide consumption and pollution: With China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(2), 125.
  • Zilnik, G., Kraus, D. A., & Burrack, H. J. (2021). Translocation and persistence of soil applied chlorantraniliprole as a control measure for Chloridea virescens in tobacco plant Nicotiana tabacum. Crop Protection, 140, 105413. https://doi.org/10.1016/j.cropro.2020.105413
  • Zotti, M., Dos Santos, E. A., Cagliari, D., Christiaens, O., Taning, C. N. T., & Smagghe, G. (2018). RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Management Science, 74(6), 1239–1250. https://doi.org/10.1002/ps.4813