241
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

A comparison of chemical composition, bioactive components and hypoglycemic activity of Stigma maydis obtained from different growing times

, , , , , , & show all
Article: 2338650 | Received 17 Aug 2023, Accepted 31 Mar 2024, Published online: 11 Apr 2024

References

  • Adhikary, S., & Dasgupta, N. (2023). Role of secondary metabolites in plant homeostasis during biotic stress. Biocatalysis and Agricultural Biotechnology, 50, 1. https://doi.org/10.1016/j.bcab.2023.102712
  • Andrade, J. K. S., Barros, R. G. C., Rezende, Y. R. R. S., Nogueira, J. P., de Oliveira, C. S., Gualberto, N. C., & Narain, N. (2021). Evaluation of bioactive compounds, phytochemicals profile and antioxidant potential of the aqueous and ethanolic extracts of some traditional fruit tree leaves used in Brazilian folk medicine. Food Research International (Ottawa, Ont.), 143, 110282. https://doi.org/10.1016/j.foodres.2021.110282
  • Boath, A. S., Stewart, D., & McDougall, G. J. (2012). Berry components inhibit α-glucosidase in vitro: Synergies between acarbose and polyphenols from black currant and rowanberry. Food Chemistry, 135(3), 929–14. https://doi.org/10.1016/j.foodchem.2012.06.065
  • Chaiittianan, R., Chayopas, P., Rattanathongkom, A., Tippayawat, P., & Sutthanut, K. (2016). Anti-obesity potential of corn silks: Relationships of phytochemicals and antioxidation, anti-pre-adipocyte proliferation, anti-adipogenesis, and lipolysis induction. Journal of Functional Foods, 23, 497–510. https://doi.org/10.1016/j.jff.2016.03.010
  • CNIPA. State Intellectual Property Office of The People’s Republic of China. China patent announcement. http://epub.sipo.gov.cn/index.action
  • Corrigan, H., Dunne, A., Purcell, N., Guo, Y., Wang, K., Xuan, H., & Granato, D. (2023). Conceptual functional-by-design optimisation of the antioxidant capacity of trans-resveratrol, quercetin, and chlorogenic acid: Application in a functional tea. Food Chemistry, 428, 136764. https://doi.org/10.1016/j.foodchem.2023.136764
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. J. A. C. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017
  • Farhadi, N., Babaei, K., Farsaraei, S., Moghaddam, M., & Ghasemi Pirbalouti, A. (2020). Changes in essential oil compositions, total phenol, flavonoids and antioxidant capacity of Achillea millefolium at different growth stages. Industrial Crops and Products, 152, 112570. https://doi.org/10.1016/j.indcrop.2020.112570
  • Gulati, A., Singh, J., Rasane, P., Kaur, S., Kaur, J., & Nanda, V. (2023). Anti-cancerous effect of corn silk: a critical review on its mechanism of action and safety evaluation. 3 Biotech, 13(7), 246. https://doi.org/10.1007/s13205-023-03673-1
  • Guo, Q., Chen, Z., Santhanam, R. K., Xu, L., Gao, X., Ma, Q., Xue, Z., & Chen, H. (2019). Hypoglycemic effects of polysaccharides from corn silk (Stigma maydis) and their beneficial roles via regulating the PI3K/Akt signaling pathway in L6 skeletal muscle myotubes. International Journal of Biological Macromolecules, 121, 981–988. https://doi.org/10.1016/j.ijbiomac.2018.10.100
  • Guo, Q., Ma, Q., Xue, Z., Gao, X., & Chen, H. (2018). Studies on the binding characteristics of three polysaccharides with different molecular weight and flavonoids from corn silk (Stigma maydis). Carbohydrate Polymers, 198, 581–588. https://doi.org/10.1016/j.carbpol.2018.06.120
  • Hasanudin, K., Hashim, P., & Mustafa, S. (2012). Corn Silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules (Basel, Switzerland), 17(8), 9697–9715. in: https://doi.org/10.3390/molecules17089697
  • Hu, R., Wu, S., Li, B., Tan, J., Yan, J., Wang, Y., Tang, Z., Liu, M., Fu, C., Zhang, H., & He, J.-H. (2021). Dietary ferulic acid and vanillic acid on inflammation, gut barrier function and growth performance in lipopolysaccharide-challenged piglets. Animal Nutrition, 8(1), 144–152. https://doi.org/10.1016/j.aninu.2021.6.009
  • Jaegle, B., Uroic, K., Holtkotte, X., Lucas, C., Termath, A., Schmalz, H., Bucher, M., Hoecker, U., Hülskamp, M., & Schrader, A. (2016). A fast and simple LC-MS-based characterization of the flavonoid biosynthesis pathway for few seed(ling)s. BMC Plant Biology, 16(1), 190. https://doi.org/10.1186/s12870-016-0880-7
  • Kaewnarin, K., Suwannarach, N., Kumla, J., & Lumyong, S. (2016). Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. Journal of Functional Foods, 27, 352–364. https://doi.org/10.1016/j.jff.2016.09.008
  • Kaur, J., Gulati, M., Gowthamarajan, K., Vishwas, S., Kumar Chellappan, D., Gupta, G., Dua, K., Pandey, N. K., Kumar, B., & Singh, S. K. J. M. h (2021a). Combination therapy of vanillic acid and oxaliplatin co-loaded in polysaccharide based functionalized polymeric micelles could offer effective treatment for colon cancer: A hypothesis. Medical Hypotheses, 156, 110679. https://doi.org/10.1016/j.mehy.2021.110679
  • Kaur, P., Singh, J., Kaur, M., Rasane, P., Kaur, S., Kaur, J., Nanda, V., Mehta, C. M., & Sowdhanya, D. (2023). Corn silk as an agricultural waste: A comprehensive review on its nutritional composition and bioactive potential. Waste and Biomass Valorization, 14(5), 1413–1432. https://doi.org/10.1007/s12649-022-02016-0
  • Kaur, N., Singh, B., Kaur, A., Yadav, M. P., Singh, N., Ahlawat, A. K., & Singh, A. M. (2021b). Effect of growing conditions on proximate, mineral, amino acid, phenolic composition and antioxidant properties of wheatgrass from different wheat (Triticum aestivum L.) varieties. Food Chemistry, 341(Pt 1), 128201. https://doi.org/10.1016/j.foodchem.2020.128201
  • Kilci, A., & Gocmen, D. (2014). Phenolic acid composition, antioxidant activity and phenolic content of tarhana supplemented with oat flour. Food Chemistry, 151, 547–553. https://doi.org/10.1016/j.foodchem.2013.11.038
  • Li, Y., Tan, B., Cen, Z., Fu, Y., Zhu, X., He, H., Kong, D., & Wu, H. (2021a). The variation in essential oils composition, phenolic acids and flavonoids is correlated with changes in antioxidant activity during Cinnamomum loureirii bark growth. Arabian Journal of Chemistry, 14(8), 103249. https://doi.org/10.1016/j.arabjc.2021.103249
  • Li, Y., Zhao, C., Lu, C., Zhou, S., Tian, G., He, L., Bao, Y., Fauconnier, M. L., Xiao, H., & Zheng, J. (2021b). Simultaneous determination of 14 bioactive citrus flavonoids using thin-layer chromatography combined with surface enhanced Raman spectroscopy. Food Chemistry, 338, 128115. https://doi.org/10.1016/j.foodchem.2020.128115
  • Lu, X., Fei, L., Li, Y., Du, J., Ma, W., Huang, H., & Wang, J. (2023). Effect of different plant growth regulators on callus and adventitious shoots induction, polysaccharides accumulation and antioxidant activity of Rhodiola dumulosa. Chinese Herbal Medicines, 15(2), 271–277. https://doi.org/10.1016/j.chmed.2022.07.005
  • Pantidos, N., Boath, A., Lund, V., Conner, S., & McDougall, G. J. (2014). Phenolic-rich extracts from the edible seaweed, ascophyllum nodosum, inhibit α-amylase and α-glucosidase: Potential anti-hyperglycemic effects. Journal of Functional Foods, 10, 201–209. https://doi.org/10.1016/j.jff.2014.06.018
  • Patil, M., Patil, R., Bhadane, B., Mohammad, S., & Maheshwari, V. (2017). Pancreatic lipase inhibitory activity of phenolic inhibitor from endophytic Diaporthe arengae. Biocatalysis and Agricultural Biotechnology, 10, 234–238. https://doi.org/10.1016/j.bcab.2017.03.013
  • Sabiu, S., O’Neill, F. H., & Ashafa, A. O. T. (2016). Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Journal of Ethnopharmacology, 183, 1–8. https://doi.org/10.1016/j.jep.2016.02.024
  • Sarepoua, E., Tangwongchai, R., Suriharn, B., & Lertrat, K. (2015). Influence of variety and harvest maturity on phytochemical content in corn silk. Food Chemistry, 169, 424–429. https://doi.org/10.1016/j.foodchem.2014.07.136
  • Sarepoua, Tangwongchai, R., Suriharn, K., & Lertrat, K. (2013). Relationships between phytochemicals and antioxidant activity in corn silk. International Food Research Journal, 20, 2073–2079.
  • Singh, J., Inbaraj, B. S., Kaur, S., Rasane, P., & Nanda, V. (2022a). Phytochemical Analysis and Characterization of Corn Silk (Zea mays, G5417) in. Agronomy, 12(4), 777. https://doi.org/10.3390/agronomy12040777
  • Singh, J., Kaur, S., Rasane, P., Kumar, V., & Nanda, V. (2023a). Effect of particle size on physical, techno-functional and antioxidant properties of corn silk powder. International Journal of Food Science & Technology, 58(5), 2679–2685. https://doi.org/10.1111/ijfs.15988
  • Singh, J., Rasane, P., Kaur, S., & Nanda, V. (2022b). Comparative analysis of antioxidant potential and techno-functional properties of selected corn silk varieties at different developmental stages. Journal of Food Measurement and Characterization, 16(4), 2685–2698. https://doi.org/10.1007/s11694-022-01382-6
  • Singh, J., Rasane, P., Nanda, V., & Kaur, S. (2023b). Bioactive compounds of corn silk and their role in management of glycaemic response. Journal of Food Science and Technology, 60(6), 1695–1710. https://doi.org/10.1007/s13197-022-05442-z
  • Sundar, S., Singh, B., & Kaur, A. (2023). Influence of hot-air and infra-red pretreatments on oxidative stability, physicochemical properties, phenolic and fatty acid profile of white and black chia seed (Salvia hispanica L.) oil. Journal of Food Composition and Analysis, 123, 105556. https://doi.org/10.1016/j.jfca.2023.105556
  • Tian, X., Liu, Y., Feng, X., Khaskheli, A. A., Xiang, Y., & Huang, W. (2018). The effects of alcohol fermentation on the extraction of antioxidant compounds and flavonoids of pomelo peel. LWT, 89, 763–769. https://doi.org/10.1016/j.lwt.2017.11.049
  • Vidal-Gutiérrez, M., Robles-Zepeda, R. E., Vilegas, W., Gonzalez-Aguilar, G. A., Torres-Moreno, H., & López-Romero, J. C. (2020). Phenolic composition and antioxidant activity of Bursera microphylla A. Gray. Industrial Crops and Products, 152, 112412. https://doi.org/10.1016/j.indcrop.2020.112412
  • Wang, J., Kan, L., Nie, S., Chen, H., Cui, S. W., Phillips, A. O., Phillips, G. O., Li, Y., & Xie, M. (2015). A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. LWT - Food Science and Technology, 63(1), 2–7. https://doi.org/10.1016/j.lwt.2015.03.109
  • Wang, C., Li, W., Chen, Z., Gao, X., Yuan, G., Pan, Y., & Chen, H. (2018). Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus. Food Research International (Ottawa, Ont.), 103, 280–288. https://doi.org/10.1016/j.foodres.2017.10.058
  • Wang, C., Yin, Y., Cao, X., & Li, X. (2016). Effects of Stigma maydis polysaccharide on the intestinal microflora in type-2 diabetes. Pharmaceutical Biology, 54(12), 3086–3092. https://doi.org/10.1080/13880209.2016.1211153
  • Wang, Y., Zhang, Y., Cheng, J., Zhao, J., Shi, R., He, L., Li, Q., & Chen, Y. (2022). Efficient purification of flavonoids from bamboo shoot residues of Phyllostachys edulis by macroporous resin and their hypoglycemic activity. Food Chemistry: X, 16, 100505. https://doi.org/10.1016/j.fochx.2022.100505
  • Worsztynowicz, P., Napierała, M., Białas, W., Grajek, W., & Olkowicz, M. (2014). Pancreatic α-amylase and lipase inhibitory activity of polyphenolic compounds present in the extract of black chokeberry (Aronia melanocarpa L.). Process Biochemistry, 49(9), 1457–1463. https://doi.org/10.1016/j.procbio.2014.06.002
  • Yuan, Y., Zhang, J., Fan, J., Clark, J., Shen, P., Li, Y., & Zhang, C. (2018). Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase. Food Research International (Ottawa, Ont.), 113, 288–297. https://doi.org/10.1016/j.foodres.2018.07.021
  • Zhang, C., Ma, Y., Gao, F., Zhao, Y., Cai, S., & Pang, M. (2018). The free, esterified, and insoluble-bound phenolic profiles of Rhus chinensis Mill. fruits and their pancreatic lipase inhibitory activities with molecular docking analysis. Journal of Functional Foods, 40, 729–735. https://doi.org/10.1016/j.jff.2017.12.019
  • Zhang, Y., Wang, C., Liu, C., Wang, X., Chen, B., Yao, L., Qiao, Y., & Zheng, H. (2020b). Recent developments in Stigma maydis polysaccharides: Isolation, structural characteristics, biological activities and industrial application. International Journal of Biological Macromolecules, 150, 246–252. https://doi.org/10.1016/j.ijbiomac.2020.01.294
  • Zhang, H. L., Wu, Q. X., Wei, X., & Qin, X. M. (2020a). Pancreatic lipase and cholesterol esterase inhibitory effect of Camellia nitidissima Chi flower extracts in vitro and in vivo. Food Bioscience, 37, 100682. https://doi.org/10.1016/j.fbio.2020.100682
  • Zhou, W. Y., Lin, B., Hou, Z. L., Shi, S. C., Wang, Y. X., Huang, X. X., & Song, S. J. (2020). Isolation of macrocarpene-type sesquiterpenes from Stigma maydis with neuroprotective activities. Fitoterapia, 141, 104448. https://doi.org/10.1016/j.fitote.2019.104448
  • Žilić, S., Janković, M., Basić, Z., Vančetović, J., & Maksimović, V. (2016). Antioxidant activity, phenolic profile, chlorophyll and mineral matter content of corn silk (Zea mays L): Comparison with medicinal herbs. Journal of Cereal Science, 69, 363–370. https://doi.org/10.1016/j.jcs.2016.05.003
  • Znidarcic, D. (2012). Performance and characterization of five sweet corn cultivars as influenced by soil properties. Journal of Food, Agriculture and Environment, 10, 495–500.