160
Views
0
CrossRef citations to date
0
Altmetric
Animal Husbandry & Veterinary Science

Using lactoferrin and N-acetylcysteine to augment the growth rate and hemato-biochemical parameters of Egyptian Baladi goats kids

, , , , ORCID Icon, , , , ORCID Icon, , , , & show all
Article: 2351041 | Received 11 Feb 2024, Accepted 30 Apr 2024, Published online: 13 May 2024

References

  • Abdelrazik, E., Hassan, H. M., Abdallah, Z., Magdy, A., & Farrag, E. A. E. (2022). Renoprotective effect of N-acetylcystein and vitamin E in bisphenol A-induced rat nephrotoxicity; modulators of Nrf2/NF-κB and ROS signaling pathway. Acta Bio Medica: Atenei Parmensis, 93(6), 35–43.
  • Abed, H. R., Ibrhim, I. E., Saegh, H. A. L., & Haider, A. (2020). Effect of goat milk on some physiological and immunological parameters for rats treated with aspirin induced stomach and intestinal ulcers. EurAsian Journal of Biosciences, 14(2), 124–131.
  • Abu El-Ella, A. A., Abdel-Salam, O. M., Gomaa, A., El Bodawy, A. A. A., El-Hendawy, N. M., & Mahdy, T. M. M. (2023). Studying the effect of antioxidants (Origanum Vulgare and N-Acetylcysteine) administration on productive and reproductive performance of Damascus goats and their offspring. Egyptian Journal of Sheep and Goats Sciences, 18(1), 5–20. https://doi.org/10.21608/ejsgs.2023.293604
  • Berlutti, F., Pantanella, F., Natalizi, T., Frioni, A., Paesano, R., Polimeni, A., & Valenti, P. (2011). Antiviral properties of lactoferrin – A natural immunity molecule. Molecules (Basel, Switzerland), 16(8), 6992–7018. https://doi.org/10.3390/molecules16086992
  • Braun, V., & Braun, M. (2002). Active transport of iron and siderophore antibiotics. Current Opinion in Microbiology, 5(2), 194–201. https://doi.org/10.1016/s1369-5274(02)00298-9
  • Bruni, N., Capucchio, M. T., Biasibetti, E., Pessione, E., Cirrincione, S., Giraudo, L., Corona, A., & Dosio, F. (2016). Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules (Basel, Switzerland), 21(6), 752. https://doi.org/10.3390/molecules21060752
  • Bukowska-Ośko, I., Sulejczak, D., Kaczyńska, K., Kleczkowska, P., Kramkowski, K., Popiel, M., Wietrak, E., & Kowalczyk, P. (2022). Lactoferrin as a human genome “guardian”—An overall point of view. International Journal of Molecular Sciences, 23(9), 5248. https://doi.org/10.3390/ijms23095248
  • Campbell, M. J. (2021). Statistics at square one. John Wiley & Sons.
  • Cao, X., Ren, Y., Lu, Q., Wang, K., Wu, Y., Wang, Y., Zhang, Y., Cui, X., Yang, Z., & Chen, Z. (2022). Lactoferrin: A glycoprotein that plays an active role in human health. Frontiers in Nutrition, 9, 1018336. https://doi.org/10.3389/fnut.2022.1018336
  • Ciji, A., & Akhtar, M. S. (2021). Stress management in aquaculture: A review of dietary interventions. Reviews in Aquaculture, 13(4), 2190–2247. https://doi.org/10.1111/raq.12565
  • Clark, D. A., Chaouat, G., Arck, P. C., Mittruecker, H. W., & Levy, G. A. (1998). Cutting edge: Cytokine-dependent abortion in CBA × DBA/2 mice is mediated by the procoagulant fgl2 prothombinase. Journal of Immunology, 160(2), 545–549. https://doi.org/10.4049/jimmunol.160.2.545
  • Coccolini, C., Berselli, E., Blanco-Llamero, C., Fathi, F., Oliveira, M. B. P. P., Krambeck, K., & Souto, E. B. (2023). Biomedical and nutritional applications of lactoferrin. International Journal of Peptide Research and Therapeutics, 29(5), 71. https://doi.org/10.1007/s10989-023-10541-2
  • Comino-Sanz, I. M., López-Franco, M. D., Castro, B., & Pancorbo-Hidalgo, P. L. (2021). The role of antioxidants on wound healing: A review of the current evidence. Journal of Clinical Medicine, 10(16), 3558. https://doi.org/10.3390/jcm10163558
  • Cooper, C. A., Nelson, K. M., Maga, E. A., & Murray, J. D. (2013). Consumption of transgenic cows’ milk containing human lactoferrin results in beneficial changes in the gastrointestinal tract and systemic health of young pigs. Transgenic Research, 22(3), 571–578. https://doi.org/10.1007/s11248-012-9662-7
  • Cooper, M. A., Fehniger, T. A., Turner, S. C., Chen, K. S., Ghaheri, B. A., Ghayur, T., Carson, W. E., & Caligiuri, M. A. (2001). Human natural killer cells: A unique innate immunoregulatory role for the CD56bright subset. Blood, 97(10), 3146–3151. https://doi.org/10.1182/blood.v97.10.3146
  • Cornish, J., Callon, K. E., Naot, D., Palmano, K. P., Banovic, T., Bava, U., Watson, M., Lin, J.-M., Tong, P. C., Chen, Q., Chan, V. A., Reid, H. E., Fazzalari, N., Baker, H. M., Baker, E. N., Haggarty, N. W., Grey, A. B., & Reid, I. R. (2004). Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology, 145(9), 4366–4374. https://doi.org/10.1210/en.2003-1307
  • Costagliola, G., Nuzzi, G., Spada, E., Comberiati, P., Verduci, E., & Peroni, D. G. (2021). Nutraceuticals in viral infections: An overview of the immunomodulating properties. Nutrients, 13(7), 2410. https://doi.org/10.3390/nu13072410
  • Dealtry, G. B., Farrell, M. K O., & Fernandez, N. (2000). The cytokine environment of the placenta. International Archives of Allergy and Immunology, 123(2), 107–119. https://doi.org/10.1159/000024441
  • Ebeid, T. A., Al‑Homidan, I. H., Saleh, A. A., & Barakat, H. A. (2024). Physiological and immunological aspects of feed restriction and its beneficial impacts in fattening rabbits’ productivity—An updated review. Tropical Animal Health and Production, 56(1), 33. https://doi.org/10.1007/s11250-023-03881-0
  • El-Fakharany, E. M., Abu-Serie, M. M., Habashy, N. H., & Eltarahony, M. (2022). Augmenting apoptosis-mediated anticancer activity of lactoperoxidase and lactoferrin by nanocombination with copper and iron hybrid nanometals. Scientific Reports, 12(1), 13153. https://doi.org/10.1038/s41598-022-17357-y
  • Elnagar, H. A., Wafa, W. M., & Abdel-Khalek, A. E. (2022). Oral or intrauterine N-acetyl cysteine treatment as a strategy for improving the reproductive efficiency and antioxidant capacity of lactating cows. Advances in Animal and Veterinary Sciences, 10(8), 1841–1848.
  • El-Sayed, A., El-Ashker, M., Ibrahim, Η., Shoieb, S., Ibrahim, F., Youssef, M., & El-Khodery, S. (2020). Blood metabolic profile in Barki Ewes during transition period. Journal of the Hellenic Veterinary Medical Society, 71(3), 2261–2266. https://doi.org/10.12681/jhvms.25070
  • Elzoghby, A. O., Abdelmoneem, M. A., Hassanin, I. A., Abd Elwakil, M. M., Elnaggar, M. A., Mokhtar, S., Fang, J.-Y., & Elkhodairy, K. A. (2020). Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials, 263, 120355. https://doi.org/10.1016/j.biomaterials.2020.120355
  • Ezzat, G. M., Nassar, A. Y., Bakr, M. H., Mohamed, S., Nassar, G. A., & Kamel, A. A. (2023). Acetylated oligopeptide and N-acetyl cysteine protected against oxidative stress, inflammation, testicular-blood barrier damage, and testicular cell death in iron-overload rat model. Applied Biochemistry and Biotechnology, 195(8), 5053–5071. https://doi.org/10.1007/s12010-023-04457-2
  • Goma, A. A., & Phillips, C. J. C. (2022). ‘Can they take the heat?’—The Egyptian climate and its effects on livestock. Animals, 12(15), 1937. https://doi.org/10.3390/ani12151937
  • Gupta, C., & Prakash, D. (2017). Therapeutic potential of milk whey. Beverages, 3(3), 31. https://doi.org/10.3390/beverages3030031
  • Hu, P., Zhao, F., Wang, J., & Zhu, W. (2021). Metabolomic profiling reveals the effects of early-life lactoferrin intervention on protein synthesis, energy production and antioxidative capacity in the liver of suckling piglets. Food & Function, 12(8), 3405–3419. https://doi.org/10.1039/d0fo01747g
  • Jain, N. C. (1993). Essentials of veterinary hematology, comparative hematology of common domestic animals (pp. 44–46). Lea and Febiger. http://refhub.elsevier.com/S2405-8440(21)01220-2/sref27
  • Kabelitz, T., Aubry, E., van Vorst, K., Amon, T., & Fulde, M. (2021). The role of Streptococcus spp. in bovine mastitis. Microorganisms, 9(7), 1497. https://doi.org/10.3390/microorganisms9071497
  • Kamal, M. A., Khalf, M. A., Ahmed, Z. A. M., Eljakee, J. A., Alhotan, R. A., Al-Badwi, M. A. A., Hussein, E. O., Galik, B., & Saleh, A. A. (2024). Effect of water quality on causes of calf mortality in cattle-farm-associated epidemics. Archives Animal Breeding, 67(1), 25–35. https://doi.org/10.5194/aab-67-25-2024
  • Karlsson, J. (2021). HFQ-and sRNA-mediated regulation in Neisseria Meningitidis. Karolinska Institutet.
  • Kasem, S. E., Helal, M., Mahmoud, S., Salama, E., Elkady, A., & Elsayed, R. M. (2022). Ameliorative effect of N acetyl cysteine against diclofenac-induced oxidative stress, hematological and splenic toxicity in male rats. Egyptian Society of Clinical Toxicology Journal, 10(1), 1–13. https://doi.org/10.21608/esctj.2022.127050.1006
  • Kell, D. B., Heyden, E. L., & Pretorius, E. (2020). The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Frontiers in Immunology, 11, 1221. https://doi.org/10.3389/fimmu.2020.01221
  • Kim, B., Lee, S.-M., Park, S.-J., Lee, S., & Kim, T. (2023). Role of Klotho and N-acetylcysteine in oxidative stress associated with the vitrification of ovarian tissue cytoprotective function of Klotho in cryopreservation. Tissue Engineering and Regenerative Medicine, 20(4), 637–646. https://doi.org/10.1007/s13770-023-00556-7
  • Kong, Y., Feng, M., & Sun, J. (2023). Novel antioxidant peptides in fermented pork sausage: Purification, characterization, and cytoprotective functions on Caco-2 cells. Food Chemistry, 426, 136566. https://doi.org/10.1016/j.foodchem.2023.136566
  • Lasram, M. M., Dhouib, I. B., Annabi, A., El Fazaa, S., & Gharbi, N. (2015). A review on the possible molecular mechanism of action of N-acetylcysteine against insulin resistance and type-2 diabetes development. Clinical Biochemistry, 48(16–17), 1200–1208. https://doi.org/10.1016/j.clinbiochem.2015.04.017
  • Liou, G.-G., Hsieh, C.-C., Lee, Y.-J., Li, P.-H., Tsai, M.-S., Li, C.-T., & Wang, S.-H. (2021). N-Acetyl cysteine overdose inducing hepatic steatosis and systemic inflammation in both propacetamol-induced hepatotoxic and normal mice. Antioxidants, 10(3), 442. https://doi.org/10.3390/antiox10030442
  • Lippi, G., Von Meyer, A., Cadamuro, J., & Simundic, A.-M. (2019). Blood sample quality. Diagnosis (Berlin, Germany), 6(1), 25–31. https://doi.org/10.1515/dx-2018-0018
  • Liu, Y., Na, Q., Liu, J., Liu, A., Oppong, A., Lee, J. Y., Chudnovets, A., Lei, J., Sharma, R., Kannan, S., Kannan, R. M., & Burd, I. (2022). Dendrimer-based N-acetyl cysteine maternal therapy ameliorates placental inflammation via maintenance of M1/M2 macrophage recruitment. Frontiers in Bioengineering and Biotechnology, 10, 819593. https://doi.org/10.3389/fbioe.2022.819593
  • Mallaki, M., Taghizadeh, A., Hamidian, G., & Paya, H. (2021). The effect of Bovine Lactoferrin and probiotic on performance and health status of ghezel lambs in preweaning phase.
  • Marai, I. F. M., Ayyat, M. S., & Abd El-Monem, U. M. (2001). Growth performance and reproductive traits at first parity of New Zealand White female rabbits as affected by heat stress and its alleviation under Egyptian conditions. Tropical Animal Health and Production, 33(6), 451–462. https://doi.org/10.1023/A:1012772311177
  • Niaz, B., Saeed, F., Ahmed, A., Imran, M., Maan, A. A., Khan, M. K. I., Tufail, T., Anjum, F. M., Hussain, S., & Suleria, H. A. R. (2019). Lactoferrin (LF): A natural antimicrobial protein. International Journal of Food Properties, 22(1), 1626–1641. https://doi.org/10.1080/10942912.2019.1666137
  • Nrc, N. R. C. (1985). Nutrient requirements of sheep (Vol. 5). National Academies Press. https://lccn.loc.gov/74000899
  • Omar, S. M., Zahran, N. N., Alhotan, R. A., Hussein, E. O., Galik, B., & Saleh, A. A. (2024). Evaluation of Salvia hispanica as a therapeutic agent against sodium arsenic-induced testicular toxicity in a male rats model. Life (Basel, Switzerland), 14(1), 109. https://doi.org/10.3390/life14010109
  • Pesántez-Pacheco, J. L., Heras-Molina, A., Torres-Rovira, L., Sanz-Fernández, M. V., García-Contreras, C., Vázquez-Gómez, M., Feyjoo, P., Cáceres, E., Frías-Mateo, M., Hernández, F., Martínez-Ros, P., González-Martin, J. V., González-Bulnes, A., & Astiz, S. (2019). Influence of maternal factors (weight, body condition, parity, and pregnancy rank) on plasma metabolites of dairy ewes and their lambs. Animals: An Open Access Journal from MDPI, 9(4), 122. https://doi.org/10.3390/ani9040122
  • Poles, J., Karhu, E., McGill, M., McDaniel, H. R., & Lewis, J. E. (2021). The effects of twenty-four nutrients and phytonutrients on immune system function and inflammation: A narrative review. Journal of Clinical and Translational Research, 7(3), 333–376.
  • Purba, R. A., Suong, N. T., Paengkoum, S., Schonewille, J. T., & Paengkoum, P. (2022). Dietary inclusion of anthocyanin-rich black cane silage treated with ferrous sulfate heptahydrate reduces oxidative stress and promotes tender meat production in goats. Frontiers in Veterinary Science, 9, 969321. https://doi.org/10.3389/fvets.2022.969321
  • Ripani, U., Bisaccia, M., & Meccariello, L. (2022). Dexamethasone and nutraceutical therapy can reduce the myalgia due to COVID-19–A systemic review of the active substances that can reduce the expression of interlukin-6. Medical Archives (Sarajevo, Bosnia and Herzegovina), 76(1), 66–71. https://doi.org/10.5455/medarh.2022.76.66-71
  • Rosa, L., Cutone, A., Conte, M. P., Campione, E., Bianchi, L., & Valenti, P. (2022). An overview on in vitro and in vivo antiviral activity of lactoferrin: Its efficacy against SARSCoV-2 infection. BioMetals, 36, 417–436. https://doi.org/10.1007/s10534-022-00427-z
  • Saeed, M., Hussain, N., Ahmed, S., Khan, R. U., Andoh, V., Husain, S., & Huayou, C. (2023). The potential of lactoferrin: A call for future research in poultry nutrition. World’s Poultry Science Journal, 79(4), 731–750. https://doi.org/10.1080/00439339.2023.2239764
  • Saleh, A. A., Soliman, M. M., Yousef, M. F., Eweedah, N. M., El-Sawy, H. B., Shukry, M., Wadaan, M. A. M., Kim, I. H., Cho, S., & Eltahan, H. M. (2023). Effects of herbal supplements on milk production quality and specific blood parameters in heat-stressed early lactating cows. Frontiers in Veterinary Science, 10, 1180539. https://doi.org/10.3389/fvets.2023.1180539
  • Schoeps, V. A., Graves, J. S., Stern, W. A., Zhang, L., Nourbakhsh, B., Mowry, E. M., Henry, R. G., & Waubant, E. (2022). N-acetyl cysteine as a neuroprotective agent in progressive multiple sclerosis (NACPMS) trial: Study protocol for a randomized, double-blind, placebo-controlled add-on phase 2 trial. Contemporary Clinical Trials, 122, 106941. https://doi.org/10.1016/j.cct.2022.106941
  • Selim, S., Seleiman, M. F., Hassan, M. M., Saleh, A. A., & Mousa, M. A. (2021). Impact of dietary supplementation with Moringa oleifera leaves on performance, meat characteristics, oxidative stability, and fatty acid profile in growing rabbits. Animals: An Open Access Journal from MDPI, 11(2), 248. https://doi.org/10.3390/ani11020248
  • Shiozawa, A., Kajiwara, C., Ishii, Y., & Tateda, K. (2020). N-acetyl-cysteine mediates protection against Mycobacterium avium through induction of human β-defensin-2 in a mouse lung infection model. Microbes and Infection, 22(10), 567–575. https://doi.org/10.1016/j.micinf.2020.08.003
  • Singh, A., Duche, R. T., Wandhare, A. G., Sian, J. K., Singh, B. P., Sihag, M. K., Singh, K. S., Sangwan, V., Talan, S., & Panwar, H. (2023). Milk-derived antimicrobial peptides: Overview, applications, and future perspectives. Probiotics and Antimicrobial Proteins, 15(1), 44–62. https://doi.org/10.1007/s12602-022-10004-y
  • Suong, N. T. M., Paengkoum, S., Schonewille, J. T., Purba, R. A. P., & Paengkoum, P. (2022). Growth performance, blood biochemical indices, rumen bacterial community, and carcass characteristics in goats fed anthocyanin-rich black cane silage. Frontiers in Veterinary Science, 9, 880838. https://doi.org/10.3389/fvets.2022.880838
  • Venkata Rao, K. V., Usha Rani, M., Gopala Reddy, A., Lakshman, M., Kalyani, P., Anil Kumar, B., & Rajender, B. (2022). Amelioration of CCl4 and high fat diet-induced haematological parameters of C57BL/6 mice through lactoferrin.
  • Wiles, K., Bramham, K., Seed, P. T., Nelson-Piercy, C., Lightstone, L., & Chappell, L. C. (2019). Serum creatinine in pregnancy: A systematic review. Kidney International Reports, 4(3), 408–419. https://doi.org/10.1016/j.ekir.2018.10.015
  • Xu, T., Zhu, H., Liu, R., Wu, X., Chang, G., Yang, Y., & Yang, Z. (2022). The protective role of caffeic acid on bovine mammary epithelial cells and the inhibition of growth and biofilm formation of Gram-negative bacteria isolated from clinical mastitis milk. Frontiers in Immunology, 13, 1005430. https://doi.org/10.3389/fimmu.2022.1005430
  • Yan, M., Huo, Y., Yin, S., & Hu, H. (2018). Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biology, 17, 274–283. https://doi.org/10.1016/j.redox.2018.04.019
  • Yi, M., Kim, H.-P., Jeong, K. Y., Kim, C.-R., Kim, T. Y., & Yong, T.-S. (2015). House dust mite allergen Der f 1 induces IL-8 in human basophilic cells via ROS-ERK and p38 signal pathways. Cytokine, 75(2), 356–364. https://doi.org/10.1016/j.cyto.2015.07.011
  • Yin, X. Y., Cai, Y., Zhu, Z. H., Zhai, C. P., Li, J., Ji, C. F., Chen, P., Wang, J., Wu, Y. M., Chan, R. C. K., Jia, Q. F., & Hui, L. (2022). Associations of decreased serum total protein, albumin, and globulin with depressive severity of schizophrenia. Frontiers in Psychiatry, 13, 957671. https://doi.org/10.3389/fpsyt.2022.957671
  • Zarzosa-Moreno, D., Avalos-Gómez, C., Ramírez-Texcalco, L. S., Torres-López, E., Ramírez-Mondragón, R., Hernández-Ramírez, J. O., Serrano-Luna, J., & de la Garza, M. (2020). Lactoferrin and its derived peptides: An alternative for combating virulence mechanisms developed by pathogens. Molecules (Basel, Switzerland), 25(24), 5763. https://doi.org/10.3390/molecules25245763
  • Zhou, Y., Banday, A. H., Hruby, V. J., & Cai, M. (2019). Development of N-acetylated dipalmitoyl-S-glyceryl cysteine analogs as efficient TLR2/TLR6 agonists. Molecules (Basel, Switzerland), 24(19), 3512. https://doi.org/10.3390/molecules24193512