104
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of outdoor temperature on thermal adaptation: Annual neutral temperature and thermal sensitivity

ORCID Icon, & ORCID Icon
Pages 510-522 | Received 02 Feb 2023, Accepted 01 Nov 2023, Published online: 26 Feb 2024

References

  • Araújo, V. M. D., and E. H. S. Araújo. 1999. The applicability of ISO 7730 for the assessment of the thermal conditions of users of the buildings in Natal-Brazil. Proceedings of Indoor Air 99:148–53.
  • Auliciems, A. 1981. Towards a psychophysiological model of thermal perception. International Journal of Biometeorology 25 (2):109–22. doi: 10.1007/BF02184458
  • Brager, G. S., and R. J. de Dear. 1998. Thermal adaptation in the built environment: A literature review. Energy and Buildings 27 (1):83–96. doi: 10.1016/S0378-7788(97)00053-4
  • Brück, K. 1990. Long-term and short-term adaptive phenomena in temperature regulation. In Thermoreception and temperature regulation, ed. H. A. Braun, K. Bruck, and G. Heldmaier, 53–67. New York, NY: Springer-Verlag.
  • Cao, B., Y. Zhu, Q. Ouyang, X. Zhou, and L. Huang. 2011. Field study of human thermal comfort and thermal adaptability during the summer and winter in Beijing. Energy and Buildings 43 (5):1051–6. doi: 10.1016/j.enbuild.2010.09.025
  • Daanen, H. A. M., S. Racinais, and J. D. Périard. 2018. Heat acclimation decay and re-induction: A systematic review and meta-analysis. Sports Medicine 48 (2):409–30. doi: 10.1007/s40279-017-0808-x
  • de Dear, R. J., and G. S. Brager. 1998. Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions 104 (1):145–67.
  • de Dear, R. J., and G. S. Brager. 2001. The adaptive model of thermal comfort and energy conservation in the built environment. International Journal of Biometeorology 45 (2):100–8. doi: 10.1007/s004840100093
  • de Dear, R. J., G. S. Brager, and D. Cooper. 1997. Developing an adaptive model of thermal comfort and preference. Final Rep. ASHRAE Res. Proj. 884, Macquarie University, Sydney.
  • de Dear, R. J., J. Xiong, J. Kim, and B. Cao. 2020. A review of adaptive thermal comfort research since 1998. Energy & Buildings 214. doi: 10.1016/j.enbuild.2020.109893
  • de Paula Xavier, A. A., and L. Roberto. 2000. Indices of thermal comfort developed from field survey in Brazil. ASHRAE Transactions 106:45–58.
  • EN ISO 7726:2001. 2001. Ergonomics of the thermal environment instruments for measuring physical quantities. Geneva: International Standardisation Organisation.
  • Fanger, P. O., and J. Toftum. 2002. Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and Buildings 34 (6):533–6. doi: 10.1016/S0378-7788(02)00003-8
  • Fernándz, C. J. 1992. Simulation of normal annual and diurnal temperature oscillations in non-mountainous mainland united states. Agronomy Journal 84 (2):244–51.
  • Fletcher, M. J., D. W. Glew, A. Hardy, and C. Gorse. 2020. A modified approach to metabolic rate determination for thermal comfort prediction during high metabolic rate activities. Building and Environment 185:107302. doi: 10.1016/j.buildenv.2020.107302
  • Froehle, A. W. 2008. Climate variables as predictors of basal metabolic rate: New equations. American Journal of Human Biology 20 (5):510–29. doi: 10.1002/ajhb.20769
  • Galloway, V. A., W. R. Leonard, and E. Ivakine. 2000. Basal metabolic adaptation of the Evenki reindeer herders of Central Siberia. American Journal of Human Biology 12 (1):75–87. doi: 10.1002/(SICI)1520-6300(200001/02)12:1<75::AID-AJHB9>3.0.CO;2-G
  • Gautam, B., H. B. Rijal, H. Imagawa, G. Kayo, and M. Shukuya. 2020. Investigation on adaptive thermal comfort considering the thermal history of local and migrant peoples living in sub-tropical climate of Nepal. Building and Environment 185:107237. doi: 10.1016/j.buildenv.2020.107237
  • Gauthier, S. 2016. Investigating the probability of behavioural responses to cold thermal discomfort. Energy and Buildings 124:70–78. doi: 10.1016/j.enbuild.2016.04.036
  • Griffiths, I. 1990. Thermal comfort in buildings with passive solar features: Field studies. Report to the Commission of the European Communities (EN3S-090). Guildford: University of Surrey.
  • Heldmaier, G., S. Klaus, and H. Wiesinger. 1990. Seasonal adaptation of thermoregulatory heat production in small mammals. Ín Thermoreception and temperature regulation, ed. H. A. Braun, K. Bruck, and G. Heldmaier, 235–43. New York, NY: Springer-Verlag.
  • Hori, S., M. Ohnaka, K. Shiraki, J. Tsujita, H. Yoshimura, N. Saito, and M. Panata. 1977. Comparison of physical characteristics, body temperature and basal metabolism between Thai and Japanese in a neutral temperature zone. The Japanese Journal of Physiology 27 (5):525–38. doi: 10.2170/jjphysiol.27.525
  • Horowitz, M. 2014. Heat acclimation, epigenetics, and cytoprotection memory. Comprehensive Physiology 4 (1):199–230.
  • Howell, V. C., and P. A. Kennedy. 1979. Field validation of the Fanger thermal comfort model. Human Factors: The Journal of the Human Factors and Ergonomics Society 21 (2):229–39. doi: 10.1177/001872087902100211
  • Humphreys, M. A. 1978. Outdoor temperatures and comfort indoors. Building Research and Practice (J. CIB) 6 (2):92–105. doi: 10.1080/09613217808550656
  • Humphreys, M. A., and F. Nicol. 2000. Effects of measurement and formulation error on thermal comfort indices in the ASHRAE database of field studies. ASHRAE Transactions 106:493–502.
  • Humphreys, M. A., and J. F. Nicol. 2002. The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and Buildings 34 (6):667–84.
  • Jing, S., Y. Lei, H. Wang, C. Song, and X. Yan. 2019. Thermal comfort and energy-saving potential in university classrooms during the heating season. Energy and Buildings 202:109390. doi: 10.1016/j.enbuild.2019.109390
  • Johnson, Z. C., B. G. Johnson, M. A. Briggs, W. D. Devine, C. D. Snyder, N. P. Hitt, D. K. Hare, and T. V. Minkova. 2020. Paired air-water annual temperature patterns reveal hydrogeological controls on stream thermal regimes at watershed to continental scales. Journal of Hydrology 587:124929. doi: 10.1016/j.jhydrol.2020.124929
  • Jung, G. J., S. K. Song, Y. C. Ahn, G. S. Oh, and Y. B. Im. 2011. Experimental research on thermal comfort in the university classroom of regular semesters in Korea. Journal of Mechanical Science and Technology 25 (2):503–12. doi: 10.1007/s12206-010-1219-1
  • Kumar, S., M. K. Singh, A. Mathur, and M. Košir. 2020. Occupant’s thermal comfort expectations in naturally ventilated engineering workshop building: A case study at high metabolic rates. Energy and Buildings 217:109970. doi: 10.1016/j.enbuild.2020.109970
  • Kumar, S., M. K. Singh, A. Mathur, J. Mathur, and S. Mathur. 2018. Evaluation of comfort preferences and insights into behavioral adaptation of student in naturally ventilated classrooms in a tropical country, India. Building and Environment 143:532–47. doi: 10.1016/j.buildenv.2018.07.035
  • López-Pérez, L. A., J. J. Flores-Prieto, and C. Ríos-Rojas. 2019. Adaptive thermal comfort model for educational buildings in a hot-humid climate. Building and Environment 150:181–94. doi: 10.1016/j.buildenv.2018.12.011
  • Luo, M., W. Zhe, B. Gail, B. Cao, and Y. Zhu. 2018. Indoor climate experience, migration, and thermal comfort expectation in buildings. Building and Environment 141:262–72. doi: 10.1016/j.buildenv.2018.05.047
  • Luo, M., X. Zhou, Y. Zhu, D. Zhang, and B. Cao. 2016. Exploring the dynamic process of human thermal adaptation: A study in teaching building. Energy and Buildings 127:425–32. doi: 10.1016/j.enbuild.2016.05.096
  • Maiti, R. 2014. PMV model is insufficient to capture subjective thermal response from Indians. International Journal of Industrial Ergonomics 44 (3):349–61. doi: 10.1016/j.ergon.2014.01.005
  • McCartney, K. J., and J. F. Nicol. 2002. Developing an adaptive control algorithm for Europe. Energy and Buildings 34 (6):623–35. doi: 10.1016/S0378-7788(02)00013-0
  • Ministry of Housing and Urban Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2012. Evaluation Standard for Indoor Thermal Environment in Civil Buildings, 2012. GB/T 50785-2012, Beijing [in Chinese].
  • Mishra, A. K., and M. Ramgopal. 2014. Thermal comfort in undergraduate laboratories - A field study in Kharagpur, India. Building and Environment 71:223–32. doi: 10.1016/j.buildenv.2013.10.006
  • Mustapa, M. S., S. A. Zaki, H. B. Rijal, A. Hagishima, M. Sukri, and M. Ali. 2016. Thermal comfort and occupant adaptive behaviour in Japanese university buildings with free running and cooling mode offices during summer. Building and Environment 105:332–42. doi: 10.1016/j.buildenv.2016.06.014
  • Nicol, J. F., and M. Humphreys. 2010. Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251. Building and Environment 45 (1):11–7. doi: 10.1016/j.buildenv.2008.12.013
  • Nicol, J. F., G. N. Jamy, O. Sykes, M. Humphreys, S. Roaf, and M. Hancock. 1994. A survey of thermal comfort in Pakistan toward new indoor temperature standards. Oxford: Oxford Brookes University.
  • Ning, H., Z. Wang, and Y. Ji. 2016. Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability? Applied Energy 183:22–30. doi: 10.1016/j.apenergy.2016.08.157
  • Orosa, J. A. and A. C. Oliveira. 2011. A new thermal comfort approach comparing adaptive and PMV models. Renewable Energy.36 (3):951–6. doi: 10.1016/j.renene.2010.09.013
  • Pallubinsky, H., B. R. M. Kingma, L. Schellen, B. Dautzenberg, M. A. van Baak, M. van Marken, and W. D. Lichtenbelt. 2017. The effect of warmth acclimation on behaviour, thermophysiology and perception. Building Research & Information 45 (7):800–7. doi: 10.1080/09613218.2017.1278652
  • Pallubinsky, H., E. Phielix, B. Dautzenberg, G. Schaart, N. J. Connell, V. de Wit-Verheggen, B. Havekes, M. A. van Baak, P. Schrauwen, M. van M, et al. 2020. Passive exposure to heat improves glucose metabolism in overweight humans. Acta Physiologica 229 (4). doi: 10.1111/apha.13488
  • Pallubinsky, H., L. Schellen, B. R. M. Kingma, B. Dautzenberg, M. A. van Baak, M. van Marken, and W. D. Lichtenbelt. 2017. Thermophysiological adaptations to passive mild heat acclimation. Temperature 4 (2):176–86. doi: 10.1080/23328940.2017.1303562
  • Qu, S., Z. Wang, and W. Liu. 2021. Clothing adjustment in outdoor environment: A new clothing model based on temperature change. Building and Environment 206:108395. doi: 10.1016/j.buildenv.2021.108395
  • Rijal, H. B. 2021. Thermal adaptation of buildings and people for energy saving in extreme cold climate of Nepal. Energy and Buildings 230:110551. doi: 10.1016/j.enbuild.2020.110551
  • Rijal, H. B., M. Humphreys, and F. Nicol. 2017. Towards an adaptive model for thermal comfort in Japanese offices. Building Research & Information 45 (7):717–29. 1-10.1080/09613218.2017.1288450
  • Rijal, H. B., P. G. Tuohy, M. A. Humphreys, J. F. Nicol, A. Samuel, I. I. SamuelRaja, and J. Clarke. 2008. Development of adaptive algorithms for the operation of windows, fans and doors to predict thermal comfort and energy use in Pakistani buildings. ASHRAE Transactions 114:555–73.
  • Rijal, H. B., H. Yoshida, and N. Umemiya. 2010. Seasonal and regional differences in neutral temperatures in Nepalese traditional vernacular houses. Building and Environment 45 (12):2743–53. doi: 10.1016/j.buildenv.2010.06.002
  • Rupp, R. F., R. de Dear, and E. Ghisi. 2018. Field study of mixed-mode office buildings in Southern Brazil using an adaptive thermal comfort framework. Energy and Buildings 158:1475–86. doi: 10.1016/j.enbuild.2017.11.047
  • Rupp, R. F., J. Kim, E. Ghisi, and R. de Dear. 2019. Thermal sensitivity of occupants in different building typologies: The Griffiths constant is a variable. Energy and Buildings 200:11–20. 10.1016/j.enbuild.2019.07.048
  • Ryu, J., J. Kim, W. Hong, and R. de Dear. 2020. Defining the thermal sensitivity (Griffiths constant) of building occupants in the Korean residential context. Energy and Buildings 208:109648. doi: 10.1016/j.enbuild.2019.109648
  • Schweiker, M. 2022. Combining adaptive and heat balance models for thermal sensation prediction: A new approach towards a theory and data-driven adaptive thermal heat balance model. Indoor Air 32 (3):e13018. doi: 10.1111/ina.13018
  • Schweiker, M., and A. Wagner. 2016. A framework for an adaptive thermal heat balance model (ATHB). Building and Environment 94:252–62. doi: 10.1016/j.buildenv.2015.08.018
  • Shimaoka, A., K. Machida, T. Kumaei, K. Sugawara, S. Kurakake, N. Okamura, and J. Suemune. 1987. Seasonal variation of basal metabolism. Journal of Japanese Meteorological Society 24 (1):3–8 [In Japanese].
  • Singh, M. K., S. Kumar, R. Ooka, H. B. Rijal, G. Gupta, and A. Kumar. 2018. Status of thermal comfort in naturally ventilated classrooms during the summer season in the composite climate of India. Building and Environment 128:287–304. doi: 10.1016/j.buildenv.2017.11.031
  • Singh, M. K., R. Ooka, H. B. Rijal, S. Kumar, A. Kumar, and S. Mahapatra. 2019. Progress in thermal comfort studies in classrooms over last 50 years and way forward. Energy and Buildings 188-189:149–74. doi: 10.1016/j.enbuild.2019.01.051
  • Song, C., L. Huang, Y. Liu, Y. Dong, X. Zhou, and J. Liu. 2020. Effects of indoor thermal exposure on human dynamic thermal adaptation process. Building and Environment 179:106990. doi: 10.1016/j.buildenv.2020.106990
  • Talukdar, M. S. J., T. H. Talukdar, M. K. Singh, M. A. Baten, and M. S. Hossen. 2020. Status of thermal comfort in naturally ventilated university classrooms of Bangladesh in hot and humid summer season. Journal of Building Engineering 32:101700. doi: 10.1016/j.jobe.2020.101700
  • Thapa, S., A. K. Bansal, and G. K. Panda. 2016. Adaptive thermal comfort in the two college campuses of Salesian College, Darjeeling - Effect of difference in altitude. Building and Environment 109:25–41. doi: 10.1016/j.buildenv.2016.09.013
  • van der Lans, A., A. Nouk, J. J. Hoeks, J. Brans, B. Vijgen, G. H. E. J. Visser, M. G. W. Vosselman, M. J. Hansen, J. Jörgensen, J. A. Wu, et al. 2013. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. The Journal of Clinical Investigation 123 (8):3395–403. doi: 10.1172/JCI68993
  • van Hoof, J. 2008. Forty years of Fanger’s model of thermal comfort: Comfort for all? Indoor Air 18 (3):182–201. doi: 10.1111/j.1600-0668.2007.00516.x
  • Wang, X., L. Yang, S. Gao, S. Zhao, and Y. Zhai. 2021. Thermal comfort in naturally ventilated university classrooms: A seasonal field study in Xi’an, China. Energy and Buildings 247:111126. doi: 10.1016/j.enbuild.2021.111126
  • Wang, Z., A. Li, J. Ren, and Y. He. 2014. Thermal adaptation and thermal environment in university classrooms and offices in Harbin. Energy and Buildings 77:192–6. doi: 10.1016/j.enbuild.2014.03.054
  • Wang, Z., H. Ning, X. Zhang, and Y. Ji. 2017. Human thermal adaptation based on university students in China’s severe cold area. Science and Technology for the Built Environment 23 (3):413–20. doi: 10.1080/23744731.2016.1255495
  • Werner, J. 1990. Models of cold and warm adaptation. In Thermoreception and temperature regulation, ed.H. A. Braun, K. Bruck, and G. Heldmaier, 224–34. New York, NY: Springer-Verlag.
  • Wohlwill, J. F. 1974. Human adaptation to levels of environmental stimulation. Human Ecology 2 (2):127–47. doi: 10.1007/BF01558117
  • Yang, L., H. Yan, and J. C. Lam. 2014. Thermal comfort and building energy consumption implications – A review. Applied Energy 115:164–73. doi: 10.1016/j.apenergy.2013.10.062
  • Yang, L., H. Yan, Y. Xu, and J. C. Lam. 2013. Residential thermal environment in cold climates at high altitudes and building energy use implications. Energy and Buildings 62:139–45. doi: 10.1016/j.enbuild.2013.02.058
  • Yao, R., B. Li, and J. Liu. 2009. A theoretical adaptive model of thermal comfort - Adaptive predicted mean vote (aPMV). Building and Environment 44 (10):2089–96. doi: 10.1016/j.buildenv.2009.02.014
  • Yao, R., J. Liu, and B. Li. 2010. Occupants’ adaptive responses and perception of thermal environment in naturally conditioned university classrooms. Applied Energy 87 (3):1015–22. doi: 10.1016/j.apenergy.2009.09.028
  • Yoon, D. W., J. Y. Sohn, and K. H. Cho. 1999. The comparison on the thermal comfort sensation between the results of questionnaire survey and the calculation of the PMV values. Proceedings of Indoor Air 99:137–41.
  • Yurkevicius, B. R., B. K. Alba, A. D. Seeley, and J. W. Castellani. 2022. Human cold habituation: Physiology, timeline, and modifiers. Temperature 9 (2):122–57. doi: 10.1080/23328940.2021.1903145
  • Zaki, S. A., S. A. Damiati, H. B. Rijal, A. Hagishima, and A. A. Razak. 2017. Adaptive thermal comfort in university classrooms in Malaysia and Japan. Building and Environment 122:294–306. doi: 10.1016/j.buildenv.2017.06.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.