100
Views
0
CrossRef citations to date
0
Altmetric
Articles

Aerosol collection efficiency enhancement in HVAC systems through electrical field-Induced filter media polarization

, ORCID Icon, , , , , , ORCID Icon & ORCID Icon show all
Pages 498-509 | Received 11 Oct 2023, Accepted 14 Feb 2024, Published online: 08 Apr 2024

References

  • Adachi, M., Y. Kousaka, and K. Okuyama. 1985. Unipolar and bipolar diffusion charging of ultrafine aerosol particles. Journal of Aerosol Science 16 (2):109–23. 10.1016/0021-8502(85)90079-5
  • Agranovski, I. E., R. Huang, O. V. Pyankov, I. S. Altman, and S. A. Grinshpun. 2006. Enhancement of the performance of low-efficiency HVAC filters due to continuous unipolar ion emission. Aerosol Science and Technology 40 (11):963–8. 10.1080/02786820600833203
  • Bao, L., K. Seki, H. Niinuma, Y. Otani, R. Balgis, T. Ogi, L. Gradon, and K. Okuyama. 2016. Verification of slip flow in nanofiber filter media through pressure drop measurement at low-pressure conditions. Separation and Purification Technology 159:100–7. 10.1016/j.seppur.2015.12.045
  • Cai, R. R., H. Lu, and L. Z. Zhang. 2021. Mechanisms of performance degradation and efficiency improvement of electret filters during neutral particle loading. Powder Technology 382:133–43. 10.1016/j.powtec.2020.12.061
  • Chen, D. R., D. Y. H. Pui, and B. Y. H. Liu. 1995. Optimization of pleated filter designs using a finite-element numerical model. Aerosol Science and Technology 23 (4):579–90. 10.1080/02786829508965339
  • Choi, H.-J., M. Kumita, T. Seto, Y. Inui, L. Bao, T. Fujimoto, and Y. Otani. 2017. Effect of slip flow on pressure drop of nanofiber filters. Journal of Aerosol Science 114:244–9. 10.1016/j.jaerosci.2017.09.020
  • Del Fabbro, L., J. C. Laborde, P. Merlin, and L. Ricciardi. 2002. Air flows and pressure drop modelling for different pleated industrial filters. Filtration & Separation 39 (1):34–40. 10.1016/S0015-1882(02)80055-6
  • Emi, H., C. Kanaoka, Y. Otani, and T. Ishiguro. 1987. Collection mechanisms of electret filter. Particulate Science and Technology 5 (2):161–71. 10.1080/02726358708904545
  • Ereth, M. H., D. H. Hess, A. Driscoll, M. Hernandez, and F. Stamatatos. 2020. Particle control reduces fine and ultrafine particles greater than HEPA filtration in live operating rooms and kills biologic warfare surrogate. American Journal of Infection Control 48 (7):777–80. 10.1016/j.ajic.2019.11.017
  • Ereth, M., J. Fine, B. Massinello, H. Gallagher, E. Simpser, and F. Stamatatos. 2022. Direct and indirect healthcare and carbon savings with ACTIVE Particle ControlTM air-purification. Frontiers in Public Health 10:1073858. 10.3389/fpubh.2022.1073858
  • Ereth, M., J. Fine, F. Stamatatos, B. Mathew, D. Hess, and E. Simpser. 2021. Healthcare-associated infection impact with bioaerosol treatment and COVID-19 mitigation measures. The Journal of Hospital Infection 116:69–77. 10.1016/j.jhin.2021.07.006
  • Ereth, M., T. Wagoner, M. Blevins, and D. Hess. 2021. Elevator cabin decontamination with active particle controlTM technology. Frontiers in Public Health 9:729204. 10.3389/fpubh.2021.729204
  • Fazli, T., Y. Zeng, and B. Stephens. 2019. Fine and ultrafine particle removal efficiency of new residential HVAC filters. Indoor Air 29 (4):656–69. 10.1111/ina.12566
  • Feng, Z., and S. J. Cao. 2019. A newly developed electrostatic enhanced pleated air filters towards the improvement of energy and filtration efficiency. Sustainable Cities and Society 49:101569. 10.1016/j.scs.2019.101569
  • Feng, Z., Z. Long, and J. Mo. 2016. Experimental and theoretical study of a novel electrostatic enhanced air filter (EEAF) for fine particles. Journal of Aerosol Science 102:41–54. 10.1016/j.jaerosci.2016.08.012
  • Gradoń, L. 1987. Influence of electrostatic interactions and slip effect on aerosol filtration efficiency in fiber filters. Industrial and Engineering Chemistry Research 26 (2):306–11.
  • Hansen, B. E. 2000. Sample splitting and threshold estimation. Econometrica, Econometric Society 68:575–604.
  • Hess, D. 2013. System for filtering airborne particles. US Patent 9,468,935 B2, filed September 3, 2013, and issued March 20, 2014.
  • Hinds, W. C. 1999. Aerosol technology. 2nd ed. New York: Wiley-Interscience.
  • Hyun, J., S.-G. Lee, and J. Hwang. 2017. Application of corona discharge-generated air ions for filtration of aerosolized virus and inactivation of filtered virus. Journal of Aerosol Science 107:31–40. 10.1016/j.jaerosci.2017.02.004
  • Ji, J. H., G. N. Bae, S. H. Kang, and J. Hwang. 2003. Effect of particle loading on the collection performance of an electret cabin air filter for submicron aerosols. Journal of Aerosol Science 34 (11):1493–504. 10.1016/S0021-8502(03)00103-4
  • Johnson, T. J., R. T. Nishida, M. Irwin, J. P. R. Symonds, J. S. Olfert, and A. M. Boies. 2020. Measuring the bipolar charge distribution of nanoparticles: Review of methodologies and development using the Aerodynamic Aerosol Classifier. Journal of Aerosol Science 143:105526. 10.1016/j.jaerosci.2020.105526
  • Kim, S. H., K. S. Woo, B. Y. H. Liu, and M. R. Zachariah. 2005. Method of measuring charge distribution of nanosized aerosols. Journal of Colloid and Interface Science 282 (1):46–57. 10.1016/j.jcis.2004.08.066
  • Kirsch, A. A., and I. B. Stechkina. 1978. The theory of aerosol filtration with fibrous filters. In Fundamentals of aerosol science, ed. Shaw D.T. New York: John Wiley & Sons.
  • Kirsch, A. A., I. B. Stechkina, and N. A. Fuchs. 1973. Effect of gas slip on the pressure drop in fibrous filters. Journal of Aerosol Science 4 (4):287–93. 10.1016/0021-8502(73)90089-X
  • Larriba, C., C. J. Hogan, M. Attoui, R. Borrajo, J. F. Garcia, and J. F. de la Mora. 2011. The mobility–volume relationship below 3.0 nm examined by tandem mobility–mass measurement. Aerosol Science and Technology 45 (4):453–67. 10.1080/02786826.2010.546820
  • Lee, K. W., and B. Y. H. Liu. 1982. Theoretical study of aerosol filtration by fibrous filters. Aerosol Science and Technology 1 (2):147–61. 10.1080/02786828208958584
  • Lee, M.-H., H.-J. Choi, M. Kumita, and Y. Otani. 2020. Present status of air filters and exploration of their new applications. †KONA Powder and Particle Journal 37 (0):19–27. 10.14356/kona.2020001
  • Lee, S., D. Bui-Vinh, M. Baek, D. B. Kwak, and H. Lee. 2023. Modeling pressure drop values across ultra-thin nanofiber filters with various ranges of filtration parameters under an aerodynamic slip effect. Scientific Reports 13 (1):5449. 10.1038/s41598-023-32765-4
  • Lehtimaki, M., and K. Heinonen. 1994. Reliability of electret filters. Building and Environment 29:353–5.
  • Liu, B. Y. H., and A. Kapadia. 1978. Combined field and diffusion charging of aerosol particles in the continuum regime. Journal of Aerosol Science 9 (3):227–42. 10.1016/0021-8502(78)90045-9
  • Lücke, T., and H. Fissan. 1996. The prediction of filtration performance of high efficiency gas Filter elements. Chemical Engineering Science 51 (8):1199–208. 10.1016/0009-2509(95)00366-5
  • Maißer, A., J. M. Thomas, C. Larriba-Andaluz, S. He, and C. J. Hogan. 2015. The mass-mobility distributions of ions produced by a Po-210 source in air. Journal of Aerosol Science 90:36–50. 10.1016/j.jaerosci.2015.08.004
  • Maricq, M. M. 2005. The dynamics of electrically charged soot particles in a premixed ethylene flame. Combustion and Flame 141 (4):406–16. 10.1016/j.combustflame.2005.01.014
  • Marquard, A. 2007. Unipolar field and diffusion charging in the transition regime—part I: A 2-D limiting-sphere model. Aerosol Science and Technology 41 (6):597–610. 10.1080/02786820701272053
  • Mayer, T., and H. Borsdorf. 2014. Accuracy of ion mobility measurements dependent on the influence of humidity. Analytical Chemistry 86 (10):5069–76. 10.1021/ac5007393
  • Morán, J., L. Li, H. Ouyang, Y. Qiao, B. A. Olson, and C. J. Hogan. 2023. Characterization of the bidimensional size and charge distribution of sub- and supermicrometer particles in an electrostatic precipitator. Powder Technology 425:118578. 10.1016/j.powtec.2023.118578
  • Mylläri, F., P. Karjalainen, R. Taipale, P. Aalto, A. Häyrinen, J. Rautiainen, L. Pirjola, R. Hillamo, J. Keskinen, and T. Rönkkö. 2017. Physical and chemical characteristics of flue-gas particles in a large pulverized fuel-fired power plant boiler during co-combustion of coal and wood pellets. Combustion and Flame 176:554–66. 10.1016/j.combustflame.2016.10.027
  • Noh, K. C., J. H. Lee, C. Kim, S. Yi, J. Hwang, and Y. H. Yoon. 2011. Filtration of submicron aerosol particles using a carbon fiber ionizer-assisted electret filter. Aerosol and Air Quality Research 11 (7):811–21. 10.4209/aaqr.2011.05.0060
  • Park, J. H., K. Y. Yoon, and J. Hwang. 2011. Removal of submicron particles using a carbon fiber ionizer-assisted medium air filter in a heating, ventilation, and air-conditioning (HVAC) system. Building and Environment 46 (8):1699–708. 10.1016/j.buildenv.2011.02.010
  • Park, J. H., K. Y. Yoon, K. C. Noh, J. H. Byeon, and J. Hwang. 2010. Removal of PM2.5 entering through the ventilation duct in an automobile using a carbon fiber ionizer-assisted cabin air filter. Journal of Aerosol Science 41 (10):935–43. 10.1016/j.jaerosci.2010.07.005
  • Pich, J., H. Emi, and C. Kanaoka. 1987. Coulombic deposition mechanism in electret filters. Journal of Aerosol Science 18. (1):29–35.
  • Podgórski, A., A. Bałazy, and L. Gradoń. 2006. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chemical Engineering Science 61 (20):6804–15. 10.1016/j.ces.2006.07.022
  • Podgórski, A., and A. Bałazy. 2008. Novel formulae for deposition efficiency of electrically neutral, submicron aerosol particles in bipolarly charged fibrous filters derived using brownian dynamics approach. Aerosol Science and Technology 42 (2):123–33. 10.1080/02786820701809052
  • Raynor, P. C., and S. J. Chae. 2004. The long-term performance of electrically charged filters in a ventilation system. Journal of Occupational and Environmental Hygiene 1 (7):463–71. 10.1080/15459620490467783
  • Rebai, M., M. Prat, M. Meireles, P. Schmitz, and R. Baclet. 2010. Clogging modeling in pleated filters for gas filtration. Chemical Engineering Research and Design 88 (4):476–86. 10.1016/j.cherd.2009.08.014
  • Rebaï, M., M. Prat, M. Meireles, P. Schmitz, and R. Baclet. 2010. A semi-analytical model for gas flow in pleated filters. Chemical Engineering Science 65 (9):2835–46. 10.1016/j.ces.2010.01.014
  • Reineking, A., and J. Porstendorfer. 1986. High-volume screen diffusion batteries and α-spectroscopy for measurement of the radon daughter activity size distributions in the environment. Journal of Aerosol Science 17 (5):873–9.
  • Romay, F. J., B. Y. H. Liu, and S. J. Chae. 1998. Experimental study of electrostatic capture mechanisms in commercial electret filters. Aerosol Science and Technology 28 (3):224–34. 10.1080/02786829808965523
  • Sambaer, W., M. Zatloukal, and D. Kimmer. 2011. 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chemical Engineering Science 66 (4):613–23. 10.1016/j.ces.2010.10.035
  • Shi, B., and L. Ekberg. 2015. Ionizer assisted air filtration for collection of submicron and ultrafine particles-evaluation of long-term performance and influencing factors. Environmental Science & Technology 49 (11):6891–8. 10.1021/acs.est.5b00974
  • Stern, S. C., H. W. Zeller, and A. I. Schekman. 1960. The aerosol efficiency and pressure drop of a fibrous filter at reduced pressures. Journal of Colloid Science 15 (6):546–62. 10.1016/0095-8522(60)90058-1
  • Stolzenburg, M. R., and P. H. McMurry. 2008. Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. Aerosol Science and Technology 42 (6):421–32. 10.1080/02786820802157823
  • Takebe, M. 1974. Positive ion species and their mobilities in air. Japanese Journal of Applied Physics 13 (2):207–17. 10.1143/JJAP.13.207
  • Tang, M., D. Thompson, D. Q. Chang, S. C. Chen, and D. Y. H. Pui. 2018. Filtration efficiency and loading characteristics of PM2.5 through commercial electret filter media. Separation and Purification Technology 195:101–9. 10.1016/j.seppur.2017.11.067
  • Tian, E., and J. Mo. 2019. Toward energy saving and high efficiency through an optimized use of a PET coarse filter: The development of a new electrostatically assisted air filter. Energy and Buildings 186:276–83. 10.1016/j.enbuild.2019.01.021
  • Tian, E., F. Xia, J. Wu, Y. Zhang, J. Li, H. Wang, and J. Mo. 2020. Electrostatic air filtration by multifunctional dielectric heterocaking filters with ultralow pressure drop. ACS Applied Materials & Interfaces 12 (26):29383–92. 10.1021/acsami.0c07447
  • Tian, E., J. Mo, and X. Li. 2018. Electrostatically assisted metal foam coarse filter with small pressure drop for efficient removal of fine particles: Effect of filter medium. Building and Environment 144:419–26. 10.1016/j.buildenv.2018.08.026
  • Tian, E., J. Mo, Z. Long, H. Luo, and Y. Zhang. 2018. Experimental study of a compact electrostatically assisted air coarse filter for efficient particle removal: Synergistic particle charging and filter polarizing. Building and Environment 135:153–61. 10.1016/j.buildenv.2018.03.002
  • Tian, E., Q. Yu, Y. Gao, H. Wang, C. Wang, Y. Zhang, B. Li, M. Zhu, J. Mo, G. Xu, et al. 2021. Ultralow resistance two-stage electrostatically assisted air filtration by polydopamine coated PET coarse filter. Small (Weinheim an Der Bergstrasse, Germany) 17 (33):e2102051. 10.1002/smll.202102051
  • Vogel, C. R. 2002. Computational methods for inverse problems. Philadelphia, PA: Society for Industrial and Applied Mathematics.
  • Wang, J., S. C. Kim, and D. Y. H. Pui. 2008. Investigation of the figure of merit for filters with a single nanofiber layer on a substrate. Journal of Aerosol Science 39 (4):323–34. 10.1016/j.jaerosci.2007.12.003
  • Wiedensohler, A. 1988. An approximation of the bipolar charge distribution for particles in the submicron size range. Journal of Aerosol Science 19 (3):387–9. 10.1016/0021-8502(88)90278-9
  • Yun, K. M., C. J. Hogan, Y. Matsubayashi, M. Kawabe, F. Iskandar, and K. Okuyama. 2007. Nanoparticle filtration by electrospun polymer fibers. Chemical Engineering Science 62 (17):4751–9. 10.1016/j.ces.2007.06.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.