217
Views
0
CrossRef citations to date
0
Altmetric
Ecology, taxonomy

Anthropocene trajectories of high alpine vegetation on Mont-Blanc nunataks

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 65-79 | Received 13 Sep 2022, Accepted 16 Jun 2023, Published online: 04 Jul 2023

References

  • Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr. 19(1):134–143. doi: 10.1111/j.1466-8238.2009.00490.x.
  • Baselga A, Freckleton R. 2013. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol Evol. 4(6):552–557. doi: 10.1111/2041-210X.12029.
  • Baselga A, Orme CDL. 2012. Betapart: an R package for the study of beta diversity. Methods Ecol Evol. 3(5):808–812. doi: 10.1111/j.2041-210X.2012.00224.x.
  • Bayle A, Carlson BZ, Zimmer A, Vallée S, Rabatel A, Cremonese E, Filippa G, Dentant C, Randin C, Mainetti A, et al. 2023. Local environmental context drives heterogeneity of early succession dynamics in alpine glacier forefields. Biogeosci. 20(8):1649–1669. https://bg.copernicus.org/articles/20/1649/2023/.
  • Berner LT, Massey R, Jantz P, Forbes BC, Macias-Fauria M, Myers-Smith I, Kumpula T, Gauthier G, Andreu-Hayles L, Gaglioti BV, et al. 2020. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat Commun. 11(1):1–12. https://www.nature.com/articles/s41467-020-18479-5.
  • Bonanomi G, Idbella M, Allegrezza M, Tesei G. 2023. Dieback of the cushion plant Silene acaulis at its southern limit of distribution in the Apennines. Alp Bot. 133(1):57–62. doi: 10.1007/s00035-023-00292-7.
  • Boucher F, Dentant C, Ibanez S, Capblancq T, Boleda M, Boulangeat L, Smyčka J, Roquet C, Lavergne S. 2021. Discovery of cryptic plant diversity on the rooftops of the Alps. Sci Rep. 11(1). doi: 10.1038/s41598-021-90612-w.
  • Campbell DR. Early snowmelt projected to cause population decline in a subalpine plant. Proc Natl Acad Sci. 2019;116(26):12901–12906. https://www.pnas.org/content/116/26/12901.
  • Carlson BZ, Corona MC, Dentant C, Bonet R, Thuiller W, Choler P. 2017. Observed long-term greening of alpine vegetation—a case study in the French Alps. Environ Res Lett. 12(11):114006–114012. doi: 10.1088/1748-9326/aa84bd.
  • Choler P. 2005. Consistent shifts in alpine plant traits along a mesotopographical gradient consistent shifts in alpine plant traits along a mesotopographical gradient. Arct Antarct Alp Res. 37(4):444–453. doi: 10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2.
  • Choler P. 2018. Winter soil temperature dependence of alpine plant distribution: implications for anticipating vegetation changes under a warming climate. Perspect Plant Ecol Evol Syst. 30:6–15. doi:10.1016/j.ppees.2017.11.002.
  • Choler P, Bayle A, Carlson BZ, Randin C, Filippa G, Cremonese E. 2021. The tempo of greening in the European Alps: spatial variations on a common theme. Glob Chang Biol. 27(21):5614–5628. doi: 10.1111/gcb.15820.
  • Corlett RT. 2015. The Anthropocene concept in ecology and conservation. Trends Ecol Evol. 30(1):36–41. doi: 10.1016/j.tree.2014.10.007.
  • Dedieu JP, Carlson BZ, Bigot S, Sirguey P, Vionnet V, Choler P. 2016. On the importance of high-resolution time series of optical imagery for quantifying the effects of snow cover duration on alpine plant habitat. Remote Sens. 8(6):481. doi: 10.3390/rs8060481.
  • Dentant C. 2018. The highest vascular plants on Earth. Alp Bot. 128(2):97–106. doi: 10.1007/s00035-018-0208-3.
  • Dentant C, Lavergne S. 2013. Plantes de haute montagne: état des lieux, évolution et analyse diachronique dans le massif des Écrins (France). Bull Soc Linn Provence. 64:83–98.
  • Gabillet M, Arpin I, Prévot AC. 2020. Between hope and boredom: attending to long-term related emotions in participatory environmental monitoring programmes. Biol Conserv. 246:108594. doi:10.1016/j.biocon.2020.108594.
  • Gardent M. 2014. Inventaire et retrait des glaciers dans les alpes françaises depuis la fin du Petit Age Glaciaire. https://www.theses.fr/2014GRENA008
  • Gardent M, Rabatel A, Dedieu JP, Deline P. 2014. Multitemporal glacier inventory of the French Alps from the late 1960s to the late 2000s. Glob Planet Change. 120:24–37. doi:10.1016/j.gloplacha.2014.05.004.
  • Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernández Calzado MR, et al. 2012. Continent-wide response of mountain vegetation to climate change. Nat Clim Chang. 2(2):111–115. doi:10.1038/nclimate1329.
  • Huss M, Bookhagen B, Huggel C, Jacobsen D, Bradley RS, Clague JJ, Vuille M, Buytaert W, Cayan DR, Greenwood G, et al. 2017. Toward mountains without permanent snow and ice. Earth’s Futur. 5(5):418–435. doi:10.1002/2016EF000514.
  • Kammer PM, Schöb C, Choler P. 2007. Increasing species richness on mountain summits: upward migration due to anthropogenic climate change or re-colonisation? J Veg Sci. 18(2):301–306. doi: 10.1111/j.1654-1103.2007.tb02541.x.
  • Khedim N, Cécillon L, Poulenard J, Barré P, Baudin F, Marta S, Rabatel A, Dentant C, Cauvy‐Fraunié S, Anthelme F, et al. 2020. Topsoil organic matter build‐up in glacier forelands around the world. Glob Chang Biol:0–2.
  • Komsta L, Komsta ML. 2013. Package ‘mblm’. https://cran.pau.edu.tr/web/packages/mblm/mblm.pdf.
  • Körner C. 2011. Coldest places on earth with angiosperm plant life. Alp Bot. 121(1):11–22. doi: 10.1007/s00035-011-0089-1.
  • Kulonen A, Imboden RA, Rixen C, Maier SB, Wipf S, Diez J. 2018. Enough space in a warmer world? Microhabitat diversity and small-scale distribution of alpine plants on mountain summits. Divers Distrib. 24(2):252–261. doi: 10.1111/ddi.12673.
  • Lavergne S, Molina J, Debussche M. 2006. Fingerprints of environmental change on the rare mediterranean flora: a 115-year study. Glob Chang Biol. 12(8):1466–1478. doi: 10.1111/j.1365-2486.2006.01183.x.
  • Le Roux PC, McGeoch MA, Nyakatya MJ, Chown SL. 2005. Effects of a short-term climate change experiment on a sub-Antarctic keystone plant species. Glob Chang Biol. 11(10):1628–1639. doi: 10.1111/j.1365-2486.2005.001022.x.
  • Losapio G, de la Cruz M, Escudero A, Schmid B, Schöb C, Michalet R. 2018. The assembly of a plant network in alpine vegetation. J Veg Sci. 29(6):999–1006. doi: 10.1111/jvs.12681.
  • Mamantov MA, Gibson-Reinemer DK, Linck EB, Sheldon KS. 2021. Climate-driven range shifts of montane species vary with elevation. Global Ecol Biogeogr. 30(4):784–794. doi: 10.1111/geb.13246.
  • Maris V. 2018. La part sauvage du monde - Penser la nature dans l’Anthropocène. Éditions du Seuil, editor.
  • Marx HE, Dentant C, Renaud J, Delunel R, Tank DC, Lavergne S. 2017. Riders in the sky (islands): using a mega-phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. J Biogeogr. 44(11):2618–2630. doi: 10.1111/jbi.13073.
  • Matteodo M, Wipf S, Stöckli V, Rixen C, Vittoz P. 2013. Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ Res Lett. 8(2):024043. doi: 10.1088/1748-9326/8/2/024043.
  • Moret P, Muriel P, Jaramillo R, Dangles O. 2019. Humboldt’s Tableau Physique revisited. Proc Natl Acad Sci U S A. 116(26):12889–12894. doi: 10.1073/pnas.1904585116.
  • Mountain Research Initiative EDW Working Group. 2015. Elevation-dependent warming in mountain regions of the world. Nat Clim Change. 5(5):424–430. doi:10.1038/nclimate2563.
  • Mourey J, Ravanel L. 2017. Évolution des itinéraires d’accès aux refuges du bassin de la Mer de Glace (massif du Mont Blanc, France). Rev géographie Alp. (105–4):0–16. doi:10.4000/rga.3780.
  • Muhlfeld CC, Cline TJ, Giersch JJ, Peitzsch E, Florentine C, Jacobsen D, Hotaling S. 2020. Specialized meltwater biodiversity persists despite widespread deglaciation. Proc Natl Acad Sci U S A. 117(22):12208–12214. doi: 10.1073/pnas.2001697117.
  • Patsiou TS, Conti E, Zimmermann NE, Theodoridis S, Randin CF. 2014. Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Glob Chang Biol. 20(7):2286–2300. doi: 10.1111/gcb.12515.
  • Pauli H, Halloy SRP. 2019. High Mountain Ecosystems Under Climate Change. Oxford Res Encycl. doi: 10.1093/acrefore/9780190228620.013.764.
  • Payot V. 1854. Guide du botaniste au Jardin de la Mer de glace. Geneva.
  • Payot V. 1862. Végétation de la région des neiges, ou Flore des Grands-Mulets (Mont-Blanc). Ann Soc impériale d’agriculture Lyon. 215–222.
  • Payot V. 1868. Note sur la végétation de la région des neiges, ou Florule de la vallée de la mer de glace au centre du massif du Mont-Blanc. Mém Acad impériale des Sci B-lett arts Lyon.
  • Pohlert T. 2018. Package ‘trend’. https://cran.microsoft.com/snapshot/2018-01-12/web/packages/trend/trend.pdf.
  • Protin M, Schimmelpfennig I, Mugnier JL, Ravanel L, Le Roy M, Deline P, Favier V, Buoncristiani JF, Aumaître G, Bourlès DL, et al. 2019. Climatic reconstruction for the younger dryas/Early Holocene transition and the little ice age based on paleo-extents of Argentière glacier (French Alps). Quat Sci Rev. 221:105863. doi:10.1016/j.quascirev.2019.105863.
  • Qiu S, Zhu Z, He B. 2019. Fmask 4.0: improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sens Environ. 231:111205. doi:10.1016/j.rse.2019.05.024.
  • Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Morueta-Holme N, Nogues-Bravo D, Whittaker RJ, Fjeldså J. 2019. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Sci. 365(6458):1108–1113. doi: 10.1126/science.aax0149.
  • Randin C, Engler R, Normand S, Zimmermann NE. 2009. Climate change and plant distribution: local models predict high-elevation persistence. Glob Chang Biol. 15(6):1557–1569. doi: 10.1111/j.1365-2486.2008.01766.x.
  • Roy DP, Kovalskyy V, Zhang HK, Vermote EF, Yan L, Kumar SS, Egorov A. 2016. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens Environ. 185:57–70. doi:10.1016/j.rse.2015.12.024.
  • Roy DP, Zhang HK, Ju J, Gomez-Dans JL, Lewis PE, Schaaf CB, Sun Q, Li J, Huang H, Kovalskyy V. 2016. A general method to normalize landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens Environ. 176:255–271. doi:10.1016/j.rse.2016.01.023.
  • Rubel F, Brugger K, Haslinger K, Auer I. 2017. The climate of the European Alps: shift of very high resolution Köppen-Geiger climate zones 1800-2100. Meteorol Zeitschrift. 26(2):115–125. doi: 10.1127/metz/2016/0816.
  • Ruddiman WF. 2013. The anthropocene. Annu Rev Earth Planet Sci. 41(1):45–68. doi: 10.1146/annurev-earth-050212-123944.
  • Rumpf SB, Gravey M, Brönnimann O, Luoto M, Cianfrani C, Mariethoz G, Guisan A. 2022. From white to green: snow cover loss and increased vegetation productivity in the European Alps. Sci. 376(6597):1119–1122. doi: 10.1126/science.abn6697.
  • Rumpf S, Hülber K, Klonner G, Moser D, Schütz M, Wessely J, Willner W, Zimmermann NE, Dullinger S. 2018. Range dynamics of mountain plants decrease with elevation. Proc Natl Acad Sci USA. 115(8):1848–1853. doi: 10.1073/pnas.1713936115.
  • Saussure (de) H-B. 1779–1796. Voyage dans les Alpes. Samuel Fauche (tome I), Geneva; Barde, Manget & Compagnie (tome II), Geneva; Louis Fauche-Borel (tomes III and IV), Geneva.
  • Schneeweiss GM, Schönswetter P. 2011. A re-appraisal of nunatak survival in arctic-alpine phylogeography. Mol Ecol. 20(2):190–192. doi: 10.1111/j.1365-294X.2010.04927.x.
  • Sklenář P, Romoleroux K, Muriel P, Jaramillo R, Bernardi A, Diazgranados M, Moret P. 2021. Distribution changes in páramo plants from the equatorial high Andes in response to increasing temperature and humidity variation since 1880. Alp Bot. 131(2):201–212. doi: 10.1007/s00035-021-00270-x.
  • Soenen SA, Peddle DR, Coburn CA. 2005. SCS+C: a modified sun-canopy-sensor topographic correction in forested terrain. IEEE Trans Geosci Remote Sens. 43(9):2148–2159. doi: 10.1109/TGRS.2005.852480.
  • Sola I, González-Audícana M, Álvarez-Mozos J. 2016. Multi-criteria evaluation of topographic correction methods. Remote Sens Environ. 184:247–262. doi:10.1016/j.rse.2016.07.002.
  • Steinbauer MJ, Grytnes J-A, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy-Durchhalter M, Barni E, et al. 2018. Accelerated increase in plant species richness on mountain summits is linked to warming. Nat. 556(7700):231–234. doi: 10.1038/s41586-018-0005-6.
  • Stöckli V, Wipf S, Nilsson C, Rixen C. 2012. Using historical plant surveys to track biodiversity on mountain summits. Plant Ecol Divers. 4(4):415–425. doi: 10.1080/17550874.2011.651504.
  • Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 8(2):127–150. doi: 10.1016/0034-4257(79)90013-0.
  • Vittoz P, Bodin J, Ungricht S, Burga CA, Walther GR. 2008. One century of vegetation change on Isla Persa, a nunatak in the Bernina massif in the Swiss Alps. J Veg Sci. 19(5):671–680. doi: 10.3170/2008-8-18434.
  • Vittoz P, Dussex N, Wassefa J, Guisan A. 2009. Diaspore traits discriminate good from weak colonisers on high-elevation summits. Basic Appl Ecol. 10(6):508–515. doi: 10.1016/j.baae.2009.02.001.
  • Wang Q, Fan X, Wang M. 2014. Recent warming amplification over high elevation regions across the globe. Clim Dyn. 43(1–2):87–101. doi: 10.1007/s00382-013-1889-3.
  • Whymper E. 1892. Travels amongst the great andes of the equator.
  • Wipf S, Stöckli V, Herz K, Rixen C. 2013. The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol Divers. 6(3–4):447–455. doi: 10.1080/17550874.2013.764943.
  • Zhang Y, Woodcock CE, Arévalo P, Olofsson P, Tang X, Stanimirova R, Bullock E, Tarrio KR, Zhu Z, Friedl MA. 2022. A global analysis of the spatial and temporal variability of usable landsat observations at the pixel scale. Front Remote Sens. 3. doi:10.3389/frsen.2022.894618.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.