85
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Long-term flexural performance of concrete beams with different pozzolanic materials: experimental and analytical study

, , &

References

  • Al Chami, G., Thériault, M., & Neale, K. W. (2009). Creep behaviour of CFRP-strengthened reinforced concrete beams. Construction and Building Materials, 23(4), 1640–10. https://doi.org/10.1016/j.conbuildmat.2007.09.006
  • Alarab, A. L. A., Poursaee, A., & Ross, B. E. (2019). An experimental method for evaluating reinforcement corrosion in cracked concrete. Journal of Structural Integrity & Maintenance, 4(1), 43–50. https://doi.org/10.1080/24705314.2019.1565058
  • Arockiasamy, M., Chidambaram, S., Amer, A., & Shahawy, M. (2000). Time-dependent deformations of concrete beams reinforced with CFRP bars. Composites Part B Engineering, 31(6–7), 577–592. https://doi.org/10.1016/S1359-8368(99)00045-1
  • ASTM C39. (2003). Standard test method for compressive strength of cylindrical concrete specimens. ASTM International.
  • ASTM C469. (2003). Static modulus of elasticity and poisson’s ratio of concrete in compression.
  • ASTM C496. (2003). Splitting tensile strength of cylindrical concrete specimens.
  • ASTM C78. (2003). Flexural strength of concrete (using simple beam with third-point loading).
  • Babafemi, A. J., & Boshoff, W. P. (2016). Testing and modelling the creep of cracked macro-synthetic fibre reinforced concrete (MSFRC) under flexural loading. Materials and Structures, 49(10), 4389–4400. https://doi.org/10.1617/s11527-016-0795-7
  • Bažant, Z. P. (2001). Prediction of concrete creep and shrinkage: Past, present and future. Nuclear Engineering & Design, 203(1), 27–38. https://doi.org/10.1016/S0029-5493(00)00299-5
  • Bensalem, S., Amouri, C., Houari, H., & Belachia, M. (2017). Influence of recycled fines on the flexural creep of self-compacting concrete beams under four-point bending load. Journal of Adhesion Science and Technology, 31(14), 1515–1523. https://doi.org/10.1080/01694243.2016.1263056
  • Blanc, C. M., Sánchez, A. O., & Navarro, I. F. (2021). Analytical characterisation of axial shortening due to creep of reinforced concrete columns in tall buildings. Engineering Structures, 228, 111584. https://doi.org/10.1016/j.engstruct.2020.111584
  • Choi, W. C., & Yun, H. D. (2013). Long-term deflection and flexural behavior of reinforced concrete beams with recycled aggregate. Materials & Design, 51, 742–750. https://doi.org/10.1016/j.matdes.2013.04.044
  • Dardaei, S., Farhangian, H., & Aghayari, R. (2022). Investigating the effects of Silicone Rubber (SR), Polyether Ether Ketone (PEEK), and Nanoclay on the mechanical properties of artificial granite stone. Advances in Materials and Processing Technologies, 1–17. https://doi.org/10.1080/2374068X.2022.2131987
  • de Almeida, L. C., E Sousa, J. D., & de Azevedo Figueiras, J. (2006). Application of inverse analysis to shrinkage and creep models. In Measuring, monitoring and modeling concrete properties (pp. 151–160). Springer. https://doi.org/10.1007/978-1-4020-5104-3_19
  • Dellepiani, M. G., Vega, C. R., Pina, J. C., & Flores, E. I. (2020). Numerical investigation on the creep response of concrete structures by means of a multi-scale strategy. Construction and Building Materials, 263, 119867. https://doi.org/10.1016/j.conbuildmat.2020.119867
  • Farhangian, H., & Shakib, H. (2019). Reduction of shear lag and improvement of performance in tubular structures. Modares Civil Engineering Journal, 19(5), 181–193. In Persian.
  • García-Taengua, E., Arango, S., Martí-Vargas, J. R., & Serna, P. (2014). Flexural creep of steel fiber reinforced concrete in the cracked state. Construction and Building Materials, 65, 321–329. https://doi.org/10.1016/j.conbuildmat.2014.04.139
  • Ghasemzadeh, F., Manafpour, A., Sajedi, S., Shekarchi, M., & Hatami, M. (2016). Predicting long-term compressive creep of concrete using inverse analysis method. Construction and Building Materials, 124, 496–507. https://doi.org/10.1016/j.conbuildmat.2016.06.137
  • Ghasemzadeh, F., Sajedi, S., Shekarchi, M., Layssi, H., & Hallaji, M. (2014). Performance evaluation of different repair concretes proposed for an existing deteriorated jetty structure. Journal of Performance of Constructed Facilities, 28(4), 04014013. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000496
  • Hilaire, A., Benboudjema, F., Darquennes, A., Berthaud, Y., & Nahas, G. (2013). Analysis of concrete creep in compression, tension and bending: Numerical modeling. In Mechanics and physics of creep, shrinkage, and durability of concrete: A tribute to Zdeňk P. Bažant (pp. 348–355). American Society of Civil Engineers. https://doi.org/10.1061/9780784413111.041
  • Hong, S., De Bruyn, K., Bescher, E., Ramseyer, C., & Kang, T. H. K. (2018). Porosimetric features of calcium sulfoaluminate and portland cement pastes: Testing protocols and data analysis. Journal of Structural Integrity & Maintenance, 3(1), 52–66. https://doi.org/10.1080/24705314.2018.1426168
  • Jung, S., & Ghaboussi, J. (2010). Inverse identification of creep of concrete from in situ load–displacement monitoring. Engineering Structures, 1;32(5), 1437–1445. https://doi.org/10.1016/j.engstruct.2010.01.022
  • Komatsu, S., & Hosoda, A. (2017). Study on time-dependent behavior of RC beams with flexural cracks generated at early age. Journal of Advanced Concrete Technology, 15(8), 368–380. https://doi.org/10.3151/jact.15.368
  • Llano-Torre, A., Martí-Vargas, J. R., & Serna, P. (2020). Flexural and compressive creep behavior of UHPFRC specimens. Construction and Building Materials, 244, 118254. https://doi.org/10.1016/j.conbuildmat.2020.118254
  • Marí, A. R., Bairán, J. M., & Duarte, N. (2010). Long-term deflections in cracked reinforced concrete flexural members. Engineering Structures, 32(3), 829–842. https://doi.org/10.1016/j.engstruct.2009.12.009
  • Mehta, P. K., & Monteiro, P. J. (2014). Concrete: Microstructure, properties, and materials. McGraw-Hill Education.
  • Pujadas, P., Blanco, A., Cavalaro, S., De la Fuente, A., & Aguado, A. (2017). The need to consider flexural post-cracking creep behavior of macro-synthetic fiber reinforced concrete. Construction and Building Materials, 149, 790–800. https://doi.org/10.1016/j.conbuildmat.2017.05.166
  • Qiao, L., Yan, W., & Cao, S. (2021). Inverse analysis for damage detection in a rod using EMI method. Mechanics of Advanced Materials and Structures, 30(1), 1–7. https://doi.org/10.1080/15376494.2021.2010845
  • Ranaivomanana, N., Multon, S., & Turatsinze, A. (2013a). Basic creep of concrete under compression, tension and bending. Construction and Building Materials, 38, 173–180. https://doi.org/10.1016/j.conbuildmat.2012.08.024
  • Ranaivomanana, N., Multon, S., & Turatsinze, A. (2013b). Tensile, compressive and flexural basic creep of concrete at different stress levels. Cement and Concrete Research, 52, 1–10. https://doi.org/10.1016/j.cemconres.2013.05.001
  • Reybrouck, N., Van Mullem, T., Taerwe, L., & Caspeele, R. (2020). Influence of long‐term creep on prestressed concrete beams in relation to deformations and structural resistance: Experiments and modeling. Structural Concrete, 21(4), 1458–1474. https://doi.org/10.1002/suco.201900418
  • Rilem TC-107 CSP. (1998). Measurement of time-dependent strains of concrete. Materials and Structures, 31(8), 507–512. https://doi.org/10.1007/BF02481530
  • Seara-Paz, S., González-Fonteboa, B., Martínez-Abella, F., & Carro-López, D. (2018). Long-term flexural performance of reinforced concrete beams with recycled coarse aggregates. Construction and Building Materials, 176, 593–607. https://doi.org/10.1016/j.conbuildmat.2018.05.069
  • Shakib, H., Dardaei, S., Farhangian, H., & Torkanbouri, N. E. (2022). Seismological aspects and seismic behavior of buildings during the M 7.3 western Iran earthquake in sarpol-e-zahab region. Iranian Journal of Science & Technology, Transactions of Civil Engineering, 46(4), 3063–3079. https://doi.org/10.1007/s40996-021-00737-1
  • Shekarchi, M., Ghasemzadeh, F., & Sajedi, S. (2012). Inverse analysis method for concrete shrinkage prediction from short-term tests. ACI Materials Journal, 109(3), 293.
  • Tailhan, J. L., Boulay, C., Rossi, P., Le Maou, F., & Martin, E. (2013). Compressive, tensile and bending basic creep behaviours related to the same concrete. Structural Concrete, 14(2), 124–130. https://doi.org/10.1002/suco.201200025
  • Tan, K. H., & Saha, M. K. (2005). Ten-year study on steel fiber-reinforced concrete beams under sustained loads. ACI Structural Journal, 102(3), 472.
  • Watts, M. J., Amin, A., Gilbert, R. I., Kaufmann, W., & Minelli, F. (2020). Simplified prediction of the time dependent deflection of SFRC flexural members. Materials and Structures, 53(3), 1–11. https://doi.org/10.1617/s11527-020-01479-8
  • Wei, Y., Wu, Z., Huang, J., & Liang, S. (2018). Comparison of compressive, tensile, and flexural creep of early-age concretes under sealed and drying conditions. Journal of Materials in Civil Engineering, 30(11), 04018289. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002495
  • Zhu, C., Liu, C., Bai, G., & Fan, J. (2020). Study on long-term performance and flexural stiffness of recycled aggregate concrete beams. Construction and Building Materials, 262, 120503. https://doi.org/10.1016/j.conbuildmat.2020.120503

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.