184
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An overview of corrosion behavior and contemporary management techniques of thermomechanically treated rebars in concrete structures

, &

References

  • Afshar, A., Jahandari, S., Rasekh, H., Shariati, M., Afshar, A., & Shokrgozar, A. (2020). Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives. Construction and Building Materials, 262, 120034. https://doi.org/10.1016/j.conbuildmat.2020.120034
  • Aguirre-Guerrero, A. M., & Mejía de Gutiérrez, R. (2021). Alkali-activated protective coatings for reinforced concrete exposed to chlorides. Construction and Building Materials, 268, 121098. https://doi.org/10.1016/j.conbuildmat.2020.121098
  • Ahmadi, J., Feirahi, M. H., Farahmand-Tabar, S., & Keshvari Fard, A. H. (2021). A novel approach for non-destructive EMI-based corrosion monitoring of concrete-embedded reinforcements using multi-orientation piezoelectric sensors. Construction and Building Materials, 273, 121689. https://doi.org/10.1016/j.conbuildmat.2020.121689
  • Al-Akhras, N., & Mashaqbeh, Y. (2021). Potential use of eucalyptus leaves as green corrosion inhibitor of steel reinforcement. Journal of Building Engineering, 35, 101848. https://doi.org/10.1016/j.jobe.2020.101848
  • Al-Amiery, A. A., Isahak, W. N. R. W., & Al-Azzawi, W. K. (2023). Corrosion inhibitors: Natural and synthetic organic inhibitors. Lubricants, 11(4), 174. Article 4. https://doi.org/10.3390/lubricants11040174
  • Al-Amoudi, O. S. B., Rasheeduzzafar, M. M., & Abduljauwad, S. N. (1994). Influence of chloride ions on sulphate deterioration in plain and blended cements. Magazine of Concrete Research, 46(167), 113–20. https://doi.org/10.1680/macr.1994.46.167.113
  • Alonso, C., Castellote, M., & Andrade, C. (2002). Chloride threshold dependence of pitting potential of reinforcements. Electrochimica Acta, 47(21), 3469–3481. https://doi.org/10.1016/S0013-4686(02)00283-9
  • Angst, U. M., Geiker, M. R., Alonso, M. C., Polder, R., Isgor, O. B., Elsener, B., Wong, H., Michel, A., Hornbostel, K., Gehlen, C., François, R., Sanchez, M., Criado, M., Sørensen, H., Hansson, C., Pillai, R., Mundra, S., Gulikers, J., Raupach, M. … Sagüés, A. (2019). The effect of the steel–concrete interface on chloride-induced corrosion initiation in concrete: A critical review by RILEM TC 262-SCI. Materials and Structures, 52(4), 88. https://doi.org/10.1617/s11527-019-1387-0
  • Angst, U. M., Geiker, M. R., Michel, A., Gehlen, C., Wong, H., Isgor, O. B., Elsener, B., Hansson, C. M., François, R., Hornbostel, K., Polder, R., Alonso, M. C., Sanchez, M., Correia, M. J., Criado, M., Sagüés, A., & Buenfeld, N. (2017). The steel–concrete interface. Materials and Structures, 50(2), 143. https://doi.org/10.1617/s11527-017-1010-1
  • Anwar Hossain, K. M. (2009). Resistance of Scoria-based blended cement concrete against deterioration and corrosion in mixed sulfate environment. Journal of Materials in Civil Engineering, 21(7), 299–308. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:7(299)
  • Asaad, M. A., Ismail, M., Tahir, M. M., Huseien, G. F., Raja, P. B., & Asmara, Y. P. (2018). Enhanced corrosion resistance of reinforced concrete: Role of emerging eco-friendly elaeis guineensis/silver nanoparticles inhibitor. Construction and Building Materials, 188, 555–568. https://doi.org/10.1016/j.conbuildmat.2018.08.140
  • ASM International (Ed.). (1990). ASM handbook (10th ed.). ASM International.
  • Asrar, N., Malik, A. U., Ahmad, S., & Mujahid, F. S. (1999). Corrosion protection performance of microsilica added concretes in NaCl and seawater environments. Construction and Building Materials, 13(4), 213–219. https://doi.org/10.1016/S0950-0618(99)00016-1
  • Baghabra Al-Amoudi, O. S. (2002). Attack on plain and blended cements exposed to aggressive sulfate environments. Cement and Concrete Composites, 24(3), 305–316. https://doi.org/10.1016/S0958-9465(01)00082-8
  • Bandyopadhyay, K., Lee, J., Shim, J.-H., Hwang, B., & Lee, M.-G. (2019). Modeling and experiment on microstructure evolutions and mechanical properties in grade 600 MPa reinforcing steel rebar subjected to TempCore process. Materials Science and Engineering: A, 745, 39–52. https://doi.org/10.1016/j.msea.2018.12.079
  • Bautista, A., Pomares, J. C., González, M. N., & Velasco, F. (2019). Influence of the microstructure of TMT reinforcing bars on their corrosion behavior in concrete with chlorides. Construction and Building Materials, 229, 116899. https://doi.org/10.1016/j.conbuildmat.2019.116899
  • Beaudoin, J. J. (Ed.). (2001). Handbook of analytical techniques in concrete science and technology. Noyes Publications; William Andrew Publications.
  • Behera, P. K., Misra, S., & Mondal, K. (2022). Corrosion behavior of bent plain reinforcing bars used in concrete. Materials and Structures, 55(2), 37. https://doi.org/10.1617/s11527-022-01886-z
  • Behfarnia, K., & Salemi, N. (2013). The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Construction and Building Materials, 48, 580–584. https://doi.org/10.1016/j.conbuildmat.2013.07.088
  • Bellal, Y., Benghanem, F., & Keraghel, S. (2021). A new corrosion inhibitor for steel rebar in concrete: Synthesis, electrochemical and theoretical studies. Journal of Molecular Structure, 1225, 129257. https://doi.org/10.1016/j.molstruc.2020.129257
  • Berrocal, C. G., Fernandez, I., & Rempling, R. (2022). The interplay between corrosion and cracks in reinforced concrete beams with non-uniform reinforcement corrosion. Materials and Structures, 55(4), 120. https://doi.org/10.1617/s11527-022-01956-2
  • Bertolini, L. (2008). Steel corrosion and service life of reinforced concrete structures. Structure and Infrastructure Engineering, 4(2), 123–137. https://doi.org/10.1080/15732470601155490
  • Bertolini, L., Bolzoni, F., Pastore, T., & Pedeferri, P. (1996). Behaviour of stainless steel in simulated concrete pore solution. British Corrosion Journal, 31(3), 218–222. https://doi.org/10.1179/bcj.1996.31.3.218
  • Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., & Polder, R. B. (2014). Corrosion of steel in concrete: Prevention, diagnosis, repair (2nd ed.). Wiley-VCH. https://doi.org/10.1002/9783527651696
  • Borade, A. N., & Kondraivendhan, B. (2019). Corrosion behavior of reinforced concrete blended with metakaolin and slag in chloride environment. Journal of Sustainable Cement-Based Materials, 8(6), 367–386. https://doi.org/10.1080/21650373.2019.1566934
  • Boyd, W. K., & Fink, F. W. (1974). Corrosion of metals in the atmosphere. Battelle Columbus Labs Ohio Metals and Ceramics Information Center. https://apps.dtic.mil/sti/citations/AD0784943
  • Briant, C. L., & Messmer, R. P. (1982). An electronic model for the effect of alloying elements on the phosphorus induced grain boundary embrittlement of steel. Acta Metallurgica, 30(9), 1811–1818. https://doi.org/10.1016/0001-6160(82)90097-9
  • Cao, Y., Dong, S., Zheng, D., Wang, J., Zhang, X., Du, R., Song, G., & Lin, C. (2017). Multifunctional inhibition based on layered double hydroxides to comprehensively control corrosion of carbon steel in concrete. Corrosion Science, 126, 166–179. https://doi.org/10.1016/j.corsci.2017.06.026
  • Chawla, S. L., & Gupta, R. K. (1993). Materials selection for corrosion control. ASM International.
  • Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., & Duan, W. H. (2014). Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building Materials, 73, 113–124. https://doi.org/10.1016/j.conbuildmat.2014.09.040
  • Cubides, Y., & Castaneda, H. (2016). Corrosion protection mechanisms of carbon nanotube and zinc-rich epoxy primers on carbon steel in simulated concrete pore solutions in the presence of chloride ions. Corrosion Science, 109, 145–161. https://doi.org/10.1016/j.corsci.2016.03.023
  • Das, J. K., & Pradhan, B. (2019). Effect of cation type of chloride salts on corrosion behaviour of steel in concrete powder electrolyte solution in the presence of corrosion inhibitors. Construction and Building Materials, 208, 175–191. https://doi.org/10.1016/j.conbuildmat.2019.02.153
  • Dehwah, H. A. F., Maslehuddin, M., & Austin, S. A. (2003). Effect of sulfate ions and associated cation type on the pore solution chemistry in chloride-contaminated plain and blended cements. Cement and Concrete Composites, 25(4), 513–525. https://doi.org/10.1016/S0958-9465(02)00091-4
  • Diewald W. J. (2002). New TRB special report: The federal role in highway research and technology. Transportation Research Board. Retrieved February, 15 2021, from https://www.trb.org/Publications/Blurbs/153339.aspx
  • Doi, K., Hiromoto, S., Shinohara, T., Tsuchiya, K., Katayama, H., & Akiyama, E. (2020). Role of mill scale on corrosion behavior of steel rebars in mortar. Corrosion Science, 177, 108995. https://doi.org/10.1016/j.corsci.2020.108995
  • Domian, H. A., Emanuelson, R. H., Sarver, L. W., Theus, G. J., & Katz, L. (2013). Effect of microstructure on stress corrosion cracking of alloy 600 in high purity water. Corrosion, 33(1), 26–38. https://doi.org/10.5006/0010-9312-33.1.26
  • Dugstad, A., Hemmer, H., & Seiersten, M. (2001). Effect of steel microstructure on corrosion rate and protective iron carbonate film formation. Corrosion, 57(4), 369–378. https://doi.org/10.5006/1.3290361
  • El-Mahallawi, I. S., Koussy, M. R. E., Raghy, S. M. E., Megahed, G., Hashem, M., Waheed, A. F., & Abd-Ellatif, O. (2007). Current research in Egypt on optimisation of combined mechanical strength and corrosion behaviour of steel rebar. International Heat Treatment and Surface Engineering, 1(3), 126–137. https://doi.org/10.1179/174951507X235722
  • Elfeky, M., Serag, M., Yasien, A., & Elkady, H. (2016). Bond strength of nano silica concrete subjected to corrosive environments.
  • Erlin, B., & Hime, W. (1987). Chloride-induced corrosion. Special Publication, 102, 155–160. https://doi.org/10.14359/9986
  • Eskandari-Naddaf, H., & Ziaei-Nia, A. (2018). Simultaneous effect of nano and micro silica on corrosion behaviour of reinforcement in concrete containing cement strength grade of C-525. Procedia Manufacturing, 22, 399–405. https://doi.org/10.1016/j.promfg.2018.03.062
  • Eskermann, R., Kreysa, G., & Behrens, E. (1992). DECHEMA corrosion handbook, chlorine dioxide, seawater (G. Kreysa & R. Eckermann, Eds.). Wiley-VCH.
  • Evans, U. R. (1969). Mechanism of rusting. Corrosion Science, 9(11), 813–821. https://doi.org/10.1016/S0010-938X(69)80074-0
  • Fakhri, H., Fishman, K. L., & Ranade, R. (2020). A novel experimental method to determine the critical chloride content in cement-based composites. Construction and Building Materials, 263, 120101. https://doi.org/10.1016/j.conbuildmat.2020.120101
  • Farelas, F., Galicia, M., Brown, B., Nesic, S., & Castaneda, H. (2010). Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS. Corrosion Science, 52(2), 509–517. https://doi.org/10.1016/j.corsci.2009.10.007
  • Figueira, R. B. (2017). Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: A review. Applied Sciences, 7(11), 1157. Article 11. https://doi.org/10.3390/app7111157
  • Gerengi, H., Kurtay, M., & Durgun, H. (2015). The effect of zeolite and diatomite on the corrosion of reinforcement steel in 1M HCl solution. Results in Physics, 5, 148–153. https://doi.org/10.1016/j.rinp.2015.05.003
  • Ghods, P., Isgor, O. B., Brown, J. R., Bensebaa, F., & Kingston, D. (2011). XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties. Applied Surface Science, 257(10), 4669–4677. https://doi.org/10.1016/j.apsusc.2010.12.120
  • Gjorv, O. E., & Sakai, K., Gjorv, O. E., Sakai, K. (1999). Concrete technology for a sustainable development in the 21st century. CRC Press. https://doi.org/10.1201/9781482272215
  • Glass, G. K., & Buenfeld, N. R. (2000). The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete. Corrosion Science, 42(2), 329–344. https://doi.org/10.1016/S0010-938X(99)00083-9
  • Goffin, B., Banthia, N., & Yonemitsu, N. (2020). Use of infrared thermal imaging to detect corrosion of epoxy coated and uncoated rebar in concrete. Construction and Building Materials, 263, 120162. https://doi.org/10.1016/j.conbuildmat.2020.120162
  • Goñi, S., & Andrade, C. (1990). Synthetic concrete pore solution chemistry and rebar corrosion rate in the presence of chlorides. Cement and Concrete Research, 20(4), 525–539. https://doi.org/10.1016/0008-8846(90)90097-H
  • Goyal, A., Pouya, H. S., Ganjian, E., & Claisse, P. (2018). A review of corrosion and protection of steel in concrete. Arabian Journal for Science and Engineering, 43(10), 5035–5055. https://doi.org/10.1007/s13369-018-3303-2
  • Hussain, R. R., Alhozaimy, A., Al-Negheimish, A., & Singh, D. D. N. (2014). Time-dependent variation of the electrochemical impedance for thermo-mechanically treated versus plain low alloy steel rebars in contact with simulated concrete pore solution. Construction and Building Materials, 73, 283–288. https://doi.org/10.1016/j.conbuildmat.2014.09.099
  • Hussain, R. R., Singh, J. K., Alhozaimy, A., Al-Negheimish, A., Bhattacharya, C., Pathania, R. S., & Singh, D. D. N. (2018). Effect of reinforcing bar microstructure on passive film exposed to simulated concrete pore solution. ACI Materials Journal, 115(2). https://doi.org/10.14359/51701237
  • Islam, A. (2015). Corrosion behaviours of high strength TMT steel bars for reinforcing cement concrete structures. Procedia Engineering, 125, 623–630. https://doi.org/10.1016/j.proeng.2015.11.084
  • Jee, A. A., & Pradhan, B. (2019). Study on development of empirical relationships between durability parameters of concrete made with different types of binder and exposed to chloride environment. Construction and Building Materials, 212, 799–817. https://doi.org/10.1016/j.conbuildmat.2019.04.048
  • Jomaddar, M. R., & Bepari, M. M. A. (2016). Effect of different corroding media on the corrosion rate of locally produced thermo mechanically treated (TMT) high strength structural steel bar. Applied Mechanics and Materials, 860, 165–172. https://doi.org/10.4028/www.scientific.net/AMM.860.165
  • Kabir, I. R., & Islam, M. A. (2014). Hardened case properties and Tensile Behaviours of TMT steel bars. American Journal of Mechanical Engineering, 2(1), 8–14. Article 1. https://doi.org/10.12691/ajme-2-1-2
  • Kamde, D. K., & Pillai, R. G. (2021). Corrosion initiation mechanisms and service life estimation of concrete systems with fusion-bonded-epoxy (FBE) coated steel exposed to chlorides. Construction and Building Materials, 277, 122314. https://doi.org/10.1016/j.conbuildmat.2021.122314
  • Karakurt, C., & Topçu, İ. B. (2012). Effect of blended cements with natural zeolite and industrial by-products on rebar corrosion and high temperature resistance of concrete. Construction and Building Materials, 35, 906–911. https://doi.org/10.1016/j.conbuildmat.2012.04.045
  • Karuppanasamy, J., & Pillai, R. G. (2017). A short-term test method to determine the chloride threshold of steel–cementitious systems with corrosion inhibiting admixtures. Materials and Structures, 50(4), 205. https://doi.org/10.1617/s11527-017-1071-1
  • Katiyar, P. K., Behera, P. K., Misra, S., & Mondal, K. (2019). Effect of microstructures on the corrosion behavior of reinforcing bars (rebar) embedded in concrete. Metals and Materials International, 25(5), 1209–1226. https://doi.org/10.1007/s12540-019-00288-1
  • Keiser, J. T., Brown, C. W., & Heidersbach, R. H. (1983). Characterization of the passive film formed on weathering steels. Corrosion Science, 23(3), 251–259. https://doi.org/10.1016/0010-938X(83)90106-3
  • Keleştemur, O., & Yıldız, S. (2009). Effect of various dual-phase heat treatments on the corrosion behavior of reinforcing steel used in the reinforced concrete structures. Construction and Building Materials, 23(1), 78–84. https://doi.org/10.1016/j.conbuildmat.2008.02.001
  • Khalifa, H., Megahed, G. M., Hamouda, R. M., & Taha, M. A. (2016). Experimental investigation and simulation of structure and tensile properties of tempcore treated rebar. Journal of Materials Processing Technology, 230, 244–253. https://doi.org/10.1016/j.jmatprotec.2015.11.023
  • Koh, S. U., Kim, J. S., Yang, B. Y., & Kim, K. Y. (2004). Effect of line pipe steel microstructure on susceptibility to sulfide stress cracking. Corrosion, 60(3), 244–253. https://doi.org/10.5006/1.3287728
  • Koleva, D. A. (2018). An innovative approach to control steel reinforcement corrosion by self-healing. Materials, 11(2), 309. Article 2. https://doi.org/10.3390/ma11020309
  • Komary, M., Komarizadehasl, S., Tošić, N., Segura, I., Lozano-Galant, J. A., & Turmo, J. (2023). Low-cost technologies used in corrosion monitoring. Sensors, 23(3), 1309. Article 3. https://doi.org/10.3390/s23031309
  • Kumar, S., Kumar, A., Chakradhar, I., Manjini, S., & Reddy, S. L. V. P. (2019). Corrosion resistance behavior of Cr–Cu alloyed thermo-mechanically treated reinforced bars in 3.5% NaCl solution. Protection of Metals and Physical Chemistry of Surfaces, 55(3), 554–565. https://doi.org/10.1134/S2070205119030201
  • Kurklu, G., Baspinar, M. S., & Ergun, A. (2013). A comparative study on bond of different grade reinforcing steels in concrete under accelerated corrosion. Steel and Composite Structures, 14(3), 229–242. https://doi.org/10.12989/scs.2013.14.3.229
  • Lejouad, C., Richard, B., Mongabure, P., Capdevielle, S., & Ragueneau, F. (2022). Experimental study of corroded RC beams: Dissipation and equivalent viscous damping ratio identification. Materials and Structures, 55(2), 73. https://doi.org/10.1617/s11527-022-01906-y
  • Li, L., & Sagues, A. A. (1999, April 25). Effect of Chloride Concentration on the Pitting and Repassivation Potentials of Reinforcing Steel in Alkaline Solutions. In CORROSION 99. https://onepetro.org/NACECORR/proceedings/CORR99/All-CORR99/NACE-99567/128563
  • Li, Y., Liu, J., Dong, Z., Xing, S., Lv, Y., & Li, D. (2020). A novel testing method for examining corrosion behavior of reinforcing steel in simulated concrete pore solutions. Materials, 13(23), 5327. https://doi.org/10.3390/ma13235327
  • Li, Z., Wang, H., He, S., Lu, Y., & Wang, M. (2006). Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Materials Letters, 60(3), 356–359. https://doi.org/10.1016/j.matlet.2005.08.061
  • Lim, M.-J., Lee, H. K., Nam, I.-W., & Kim, H.-K. (2017). Carbon nanotube/cement composites for crack monitoring of concrete structures. Composite Structures, 180, 741–750. https://doi.org/10.1016/j.compstruct.2017.08.042
  • Macdonald, D. D., Qiu, J., Zhu, Y., Yang, J., Engelhardt, G. R., & Sagüés, A. (2020). Corrosion of rebar in concrete. Part I: Calculation of the corrosion potential in the passive state. Corrosion Science, 177, 109018. https://doi.org/10.1016/j.corsci.2020.109018
  • Manna, M., Chakrabarti, I., & Bandyopadhyay, N. (2006). Phosphate treatment of TMT rebar bundle to avoid early rusting: An option for single step process. Surface and Coatings Technology, 201(3–4), 1583–1588. https://doi.org/10.1016/j.surfcoat.2006.02.041
  • McDonald, D. (2019). Discussion 115-M16/From the March 2018 ACI Materials Journal, ACI Materials Journal, 116 (1), 173–181. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&id=51715560
  • Medupin, R. O., Ukoba, K. O., Yoro, K. O., & Jen, T.-C. (2023). Sustainable approach for corrosion control in mild steel using plant-based inhibitors: A review. Materials Today Sustainability, 22, 100373. https://doi.org/10.1016/j.mtsust.2023.100373
  • Meng, T., Yu, Y., Qian, X., Zhan, S., & Qian, K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar. Construction and Building Materials, 29, 241–245. https://doi.org/10.1016/j.conbuildmat.2011.10.047
  • Mi, T., Li, Y., Liu, W., Dong, Z., Gong, Q., Min, C., Xing, F., Wang, Y., & Chu, S. H. (2023). The effect of carbonation on chloride redistribution and corrosion of steel reinforcement. Construction and Building Materials, 363, 129641. https://doi.org/10.1016/j.conbuildmat.2022.129641
  • Mohd Faizal, M. J., Hamidah, M. S., Muhd Norhasri, M. S., & Noorli, I. (2016). Effect of clay as a nanomaterial on corrosion potential of steel reinforcement embedded in ultra-high performance concrete. In M. Yusoff, N. H. A. Hamid, M. F. Arshad, A. K. Arshad, A. R. M. Ridzuan, & H. Awang (Eds.), InCIEC 2015 (pp. 679–687). Springer Singapore.
  • Morooka, S., Tomota, Y., & Kamiyama, T. (2008). Heterogeneous deformation behavior studied by in situ neutron diffraction during tensile deformation for ferrite, martensite and pearlite steels. ISIJ International, 48(4), 525–530. https://doi.org/10.2355/isijinternational.48.525
  • Morris, P. (1976). Use of rapid-scan potentiodynamic techniques to evaluate pitting and crevice corrosion resistance of iron-chromium-nickel alloys. Galvanic and Pitting Corrosion—Field and Laboratory Studies. https://doi.org/10.1520/STP41410S
  • Morsy, M. S., Alsayed, S. H., & Aqel, M. (2011). Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Construction and Building Materials, 25(1), 145–149. https://doi.org/10.1016/j.conbuildmat.2010.06.046
  • Moser, R. D., Singh, P. M., Kahn, L. F., & Kurtis, K. E. (2012). Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions. Corrosion Science, 57, 241–253. https://doi.org/10.1016/j.corsci.2011.12.012
  • Mukherjee, M., Dutta, C., & Haldar, A. (2012). Prediction of hardness of the tempered martensitic rim of TMT rebars. Materials Science and Engineering: A, 543, 35–43. https://doi.org/10.1016/j.msea.2012.02.041
  • Muralidharan, S., Saraswathy, V., Merlin Nima, S. P., & Palaniswamy, N. (2004). Evaluation of a composite corrosion inhibiting admixtures and its performance in Portland pozzolana cement. Materials Chemistry and Physics, 86(2), 298–306. https://doi.org/10.1016/j.matchemphys.2004.03.025
  • NACE International. (2002). Corrosion costs and preventive strategies in the United States. NACE International. http://impact.nace.org/documents/ccsupp.pdf
  • Naderi, E., Jafari, A. H., Ehteshamzadeh, M., & Hosseini, M. G. (2009). Effect of carbon steel microstructures and molecular structure of two new Schiff base compounds on inhibition performance in 1M HCl solution by EIS. Materials Chemistry and Physics, 115(2), 852–858. https://doi.org/10.1016/j.matchemphys.2009.03.002
  • Nadlene, R., Esah, H., Norliana, S., & Irwan, M. A. M. (2011). Study on the effect of volume fraction of dual phase steel to corrosion behaviour and hardness. International Journal of Mechanical and Mechatronics Engineering, 5(2), 393–396. https://doi.org/10.5281/zenodo.1086087
  • Nair, S. A. O., & Pillai, R. G. (2020). Microstructural and corrosion characteristics of quenched and self-tempered (QST) steel reinforcing bars. Construction and Building Materials, 231, 117109. https://doi.org/10.1016/j.conbuildmat.2019.117109
  • Najimi, M., Sobhani, J., Ahmadi, B., & Shekarchi, M. (2012). An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Construction and Building Materials, 35, 1023–1033. https://doi.org/10.1016/j.conbuildmat.2012.04.038
  • Narain Singh, D. D., Yadav, S. J., Pandya, A., & Singh Panwar, K. (2008). Unfolding the mystery of the non-rusting behaviour of damascus steel. In ICOM Committee for Conservation, ICOM-CC, 15th Triennial Conference New Delhi, 22–26 September 2008: Preprints (Vol. 1, pp. 447–456). https://www.bcin.ca/bcin/detail.app?id=392229&wbdisable=true
  • Natino, M. R. L., Yang, Y., Nakamura, H., & Miura, T. (2021). Experimental study on the effect of anti-corrosive coatings on bond behavior of corroded rebar. Construction and Building Materials, 274, 121716. https://doi.org/10.1016/j.conbuildmat.2020.121716
  • The Nature of the Chemical Bond by Linus Pauling | Hardcover. (1960). Cornell University Press. Retrieved February 17, 2021, from https://www.cornellpress.cornell.edu/book/9780801403330/the-nature-of-the-chemical-bond/
  • Naveen Kumar, V., Daniel Ronald Joseph, J., Ashok, M., & Suresh Kumar, M. (2020). An experimental study on assessing the corrosion performance of steel reinforcement for the durability of concrete. IOP Conference Series: Materials Science and Engineering, 989, 12025. https://doi.org/10.1088/1757-899X/989/1/012025
  • Neville, A. M., & Brooks, J. J. (2010). Concrete technology (2nd ed.). Pearson Education Canada.
  • Nguyen, T. H., & Nguyen, T. A. (2018, April 24). Protection of steel rebar in salt-contaminated cement mortar using epoxy nanocomposite coatings [Research Article]. International Journal of Electrochemistry, 2018, 1–10. https://doi.org/10.1155/2018/8386426
  • Nguyen, T. A., Nguyen, T. H., Pham, T. L., Dinh, T. M. T., Thai, H., & Shi, X. (2017). Application of Nano-SiO2 and Nano-Fe2O3 for protection of steel rebar in chloride contaminated concrete: Epoxy nanocomposite coatings and nano-modified mortars. Journal of Nanoscience and Nanotechnology, 17(1), 427–436. https://doi.org/10.1166/jnn.2017.12396
  • Norhasri, M. S. M., Hamidah, M. S., & Fadzil, A. M. (2017). Applications of using nano material in concrete: A review. Construction and Building Materials, 133, 91–97. https://doi.org/10.1016/j.conbuildmat.2016.12.005
  • Pan, C., Chen, N., He, J., Liu, S., Chen, K., Wang, P., & Xu, P. (2020). Effects of corrosion inhibitor and functional components on the electrochemical and mechanical properties of concrete subject to chloride environment. Construction and Building Materials, 260, 119724. https://doi.org/10.1016/j.conbuildmat.2020.119724
  • Pan, X., Shi, Z., Shi, C., Ling, T.-C., & Li, N. (2017). A review on concrete surface treatment part I: Types and mechanisms. Construction and Building Materials, 132, 578–590. https://doi.org/10.1016/j.conbuildmat.2016.12.025
  • Panigrahi, B. K., Srikanth, S., & Sahoo, G. (2009). Effect of alloying elements on tensile properties, microstructure, and corrosion resistance of reinforcing bar steel. Journal of Materials Engineering and Performance, 18(8), 1102–1108. https://doi.org/10.1007/s11665-008-9336-z
  • Panigrahi, B. K., Srikanth, S., & Singh, J. (2007). Corrosion failure in the sugar industry: A case study. Journal of Failure Analysis & Prevention, 7(3), 187–191. https://doi.org/10.1007/s11668-007-9037-1
  • Paolinelli, L. D., Pérez, T., & Simison, S. N. (2008). The effect of pre-corrosion and steel microstructure on inhibitor performance in CO2 corrosion. Corrosion Science, 50(9), 2456–2464. https://doi.org/10.1016/j.corsci.2008.06.031
  • Pourbaix, M. (1974). Atlas of electrochemical equilibria in aqueous solution. NACE, 307. https://ci.nii.ac.jp/naid/10011714604/
  • Pradhan, B., & Bhattacharjee, B. (2007). Role of steel and cement type on chloride-induced corrosion in concrete. Materials Journal, 104(6), 612–619. https://doi.org/10.14359/18965
  • Pradhan, B., & Bhattacharjee, B. (2011). Rebar corrosion in chloride environment. Construction and Building Materials, 25(5), 2565–2575. https://doi.org/10.1016/j.conbuildmat.2010.11.099
  • Raghu Babu, U., & Kondraivendhan, B. (2020). Influence of bauxite residue (red mud) on corrosion of rebar in concrete. Innovative Infrastructure Solutions, 5(3), 108. https://doi.org/10.1007/s41062-020-00356-1
  • Ramani, V., & Kuang, K. S. C. (2021). Monitoring of rebar corrosion in concrete structures using a lens-based plastic optical fiber (LPOF) sensor. Construction and Building Materials, 276, 122129. https://doi.org/10.1016/j.conbuildmat.2020.122129
  • Rashed, M. N., & Palanisamy, P. N. (2018). Zeolites and their applications. BoD –Books on Demand. https://doi.org/10.5772/intechopen.70980
  • Rasheed, Q., Ali Sikandar, M., Hanif Khan, M., Akash, K., Nasir, H., & Jehan Khan, B. (2021). Assessment of chloride-induced reinforcement corrosion protection of modified sulfur polymer composites. Construction and Building Materials, 268, 121086. https://doi.org/10.1016/j.conbuildmat.2020.121086
  • Ray, A., Mukerjee, D., Sen, S. K., Bhattacharya, A., Dhua, S. K., Prasad, M. S., Banerjee, N., Popli, A. M., & Sahu, A. K. (1997). Microstructure and properties of thermomechanically strengthened reinforcement bars: A comparative assessment of plain-carbon and low-alloy steel grades. Journal of Materials Engineering and Performance, 6(3), 335–343. https://doi.org/10.1007/s11665-997-0098-9
  • Revie, R. W. (2008). Corrosion and corrosion control: An introduction to corrosion science and engineering. John Wiley & Sons. https://doi.org/10.1002/9780470277270
  • Rivera-Corral, J. O., Fajardo, G., Arliguie, G., Orozco-Cruz, R., Deby, F., & Valdez, P. (2017). Corrosion behavior of steel reinforcement bars embedded in concrete exposed to chlorides: Effect of surface finish. Construction and Building Materials, 147, 815–826. https://doi.org/10.1016/j.conbuildmat.2017.04.186
  • Rodrigues, R., Gaboreau, S., Gance, J., Ignatiadis, I., & Betelu, S. (2021). Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Construction and Building Materials, 269, 121240. https://doi.org/10.1016/j.conbuildmat.2020.121240
  • Sadeghi-Nik, A., & Bahari, A. (2011). Nano-particles in concrete and cement mixtures. Applied Mechanics & Materials, 110–116, 3853–3855. https://doi.org/10.4028/www.scientific.net/AMM.110-116.3853
  • Sankaran, S., Subramanya Sarma, V., Padmanabhan, K. A., Jaeger, G., & Koethe, A. (2003). High cycle fatigue behaviour of a multiphase microalloyed medium carbon steel: A comparison between ferrite–pearlite and tempered martensite microstructures. Materials Science and Engineering: A, 362(1), 249–256. https://doi.org/10.1016/S0921-5093(03)00583-5
  • Saraswathy, V., Karthick, S., Lee, H. S., Kwon, S.-J., & Yang, H.-M. (2017). Comparative study of strength and corrosion resistant properties of plain and blended cement concrete types. Advances in Materials Science and Engineering, 2017, 1–14. https://doi.org/10.1155/2017/9454982
  • Saraswathy, V., Muralidharan, S., Kalyanasundaram, R. M., Thangavel, K., & Srinivasan, S. (2001). Evaluation of a composite corrosion-inhibiting admixture and its performance in concrete under macrocell corrosion conditions. Cement and Concrete Research, 31(5), 789–794. https://doi.org/10.1016/S0008-8846(01)00468-9
  • Saraswathy, V., Muralidharan, S., Thangavel, K., & Srinivasan, S. (2002). Activated fly ash cements: Tolerable limit of replacement for durable steel reinforced concrete. Advances in Cement Research, 14(1), 9–16. https://doi.org/10.1680/adcr.2002.14.1.9
  • Saraswathy, V., Muralidharan, S., Thangavel, K., & Srinivasan, S. (2003). Influence of activated fly ash on corrosion-resistance and strength of concrete. Cement and Concrete Composites, 25(7), 673–680. https://doi.org/10.1016/S0958-9465(02)00068-9
  • Sarkar, P. P., Kumar, P., Manna, M. K., & Chakraborti, P. C. (2005). Microstructural influence on the electrochemical corrosion behaviour of dual-phase steels in 3.5% NaCl solution. Materials Letters, 59(19), 2488–2491. https://doi.org/10.1016/j.matlet.2005.03.030
  • Schiessl, P., & Raupach, M. (1997). Laboratory studies and Calculations on the Influence of crack width on chloride-induced corrosion of steel in concrete. Materials Journal, 94(1), 56–61. https://doi.org/10.14359/285
  • Selvaraj, R., Selvaraj, M., & Iyer, S. V. K. (2009). Studies on the evaluation of the performance of organic coatings used for the prevention of corrosion of steel rebars in concrete structures. Progress in Organic Coatings, 64(4), 454–459. https://doi.org/10.1016/j.porgcoat.2008.08.005
  • Shaheen, F., & Pradhan, B. (2017). Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cement and Concrete Research, 91, 73–86. https://doi.org/10.1016/j.cemconres.2016.10.008
  • Shaikh, F. U. A., & Supit, S. W. M. (2014). Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Construction and Building Materials, 70, 309–321. https://doi.org/10.1016/j.conbuildmat.2014.07.099
  • Shaikh, F. U. A., & Supit, S. W. M. (2015). Chloride induced corrosion durability of high volume fly ash concretes containing nano particles. Construction and Building Materials, 99, 208–225. https://doi.org/10.1016/j.conbuildmat.2015.09.030
  • Sharma, N., Sharma, S., Sharma, S. K., & Mehta, R. (2020). Evaluation of corrosion inhibition and self healing capabilities of nanoclay and tung oil microencapsulated epoxy coatings on rebars in concrete. Construction and Building Materials, 259, 120278. https://doi.org/10.1016/j.conbuildmat.2020.120278
  • Shi, J., & Ming, J. (2017). Influence of defects at the steel-mortar interface on the corrosion behavior of steel. Construction and Building Materials, 136, 118–125. https://doi.org/10.1016/j.conbuildmat.2017.01.007
  • Shi, Q., Zhang, J., & Jin, Y. (2023). Recent progress and development trends of acoustic emission detection technology for concrete structures. In Water conservancy and civil construction volume 1. CRC Press.
  • Song, H.-W., Saraswathy, V., Muralidharan, S., Lee, C.-H., & Thangavel, K. (2009). Corrosion performance of steel in composite concrete system admixed with chloride and various alkaline nitrites. Corrosion Engineering, Science and Technology, 44(6), 408–415. https://doi.org/10.1179/174327809X397848
  • Soto-Pérez, L., Vázquez, N., Molina, O., Jo, M., & Hwang, S. (2015). Effect of iron-oxide nanoparticles on the durability of fly ash cement paste. In K. Sobolev & S. P. Shah (Eds.), Nanotechnology in construction (pp. 473–478). Springer International Publishing. https://doi.org/10.1007/978-3-319-17088-6_62
  • Standard test method for corrosion potentials of uncoated reinforcing steel in concrete. (2022). Retrieved July 18, 2023, from https://www.astm.org/c0876-22b.html
  • Torbati-Sarraf, H., & Poursaee, A. (2018). Corrosion of coupled steels with different microstructures in concrete environment. Construction and Building Materials, 167, 680–687. https://doi.org/10.1016/j.conbuildmat.2018.02.083
  • Trejo, D., Monteiro, P., Thomas, G., & Wang, X. (1994). Mechanical properties and corrosion susceptibility of dual-phase steel in concrete. Cement and Concrete Research, 24(7), 1245–1254. https://doi.org/10.1016/0008-8846(94)90109-0
  • Uthaman, S., George, R. P., Vishwakarma, V., Harilal, M., & Philip, J. (2019). Enhanced seawater corrosion resistance of reinforcement in nanophase modified fly ash concrete. Construction and Building Materials, 221, 232–243. https://doi.org/10.1016/j.conbuildmat.2019.06.070
  • Vairagade, V. S., & Dhale, S. A. (2023). Hybrid fibre reinforced concrete – a state of the art review. Hybrid Advances, 3, 100035. https://doi.org/10.1016/j.hybadv.2023.100035
  • Wang, H., Zhang, A., Zhang, L., Liu, J., Han, Y., Shu, H., & Wang, J. (2020). Study on the influence of compound rust inhibitor on corrosion of steel bars in chloride concrete by electrical parameters. Construction and Building Materials, 262, 120763. https://doi.org/10.1016/j.conbuildmat.2020.120763
  • Wee, T. H., Suryavanshi, A. K., & Tin, S. S. (2000). Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures. Materials Journal, 97(2), 221–232. https://doi.org/10.14359/827
  • Wu, Q., Zhang, Z., Dong, X., & Yang, J. (2013). Corrosion behavior of low-alloy steel containing 1% chromium in CO2 environments. Corrosion Science, 75, 400–408. https://doi.org/10.1016/j.corsci.2013.06.024
  • Yamashita, M., Nagano, H., Misawa, T., & Townsend, H. E. (1998). Structure of protective rust layers formed on weathering steels by long-term exposure in the industrial atmospheres of Japan and North America. ISIJ International, 38(3), 285–290. https://doi.org/10.2355/isijinternational.38.285
  • Yumoto, H., Nagamine, Y., Nagahama, J., & Shimotomai, M. (2002). Corrosion and stability of cementite films prepared by electron shower. Vacuum, 65(3), 527–531. https://doi.org/10.1016/S0042-207X(01)00467-5
  • Zhang, C., Cai, D., Liao, B., Zhao, T., & Fan, Y. (2004). A study on the dual-phase treatment of weathering steel CuPCrNi. Materials Letters, 58(9), 1524–1529. https://doi.org/10.1016/j.matlet.2003.10.018
  • Zhang, W., François, R., Cai, Y., Charron, J.-P., & Yu, L. (2020). Influence of artificial cracks and interfacial defects on the corrosion behavior of steel in concrete during corrosion initiation under a chloride environment. Construction and Building Materials, 253, 119165. https://doi.org/10.1016/j.conbuildmat.2020.119165
  • Zhang, Z., Jung, D., & Andrawes, B. (2020). Evaluation of surface roughness and bond-slip behavior of new textured epoxy-coated reinforcing bars. Construction and Building Materials, 262, 120762. https://doi.org/10.1016/j.conbuildmat.2020.120762
  • Zheng, Y., Fan, C., Ma, J., & Wang, S. (2023). Review of research on bond–slip of reinforced concrete structures. Construction and Building Materials, 385, 131437. https://doi.org/10.1016/j.conbuildmat.2023.131437
  • Zhu, M., Du, C., Li, X., Liu, Z., Wang, S., Zhao, T., & Jia, J. (2014). Effect of strength and microstructure on stress corrosion cracking behavior and mechanism of x80 pipeline steel in high ph carbonate/bicarbonate solution. Journal of Materials Engineering and Performance, 23(4), 1358–1365. https://doi.org/10.1007/s11665-014-0880-4
  • Zomorodian, A., Bagonyi, R., & Al-Tabbaa, A. (2021). The efficiency of eco-friendly corrosion inhibitors in protecting steel reinforcement. Journal of Building Engineering, 38, 102171. https://doi.org/10.1016/j.jobe.2021.102171
  • Zomorodian, A., & Behnood, A. (2023). Review of corrosion inhibitors in reinforced concrete: Conventional and green Materials. Buildings, 13(5), 1170. Article 5. https://doi.org/10.3390/buildings13051170

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.