120
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Durability and fire resistance of high-performance fiber reinforced concrete with fly ash

, &

References

  • Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73–16. https://doi.org/10.1016/j.conbuildmat.2015.06.051
  • Akca, A. H., & Zihnioǧlu, N. Ö. (2013). High performance concrete under elevated temperatures. Construction and Building Materials, 44, 317–328. https://doi.org/10.1016/j.conbuildmat.2013.03.005
  • Alhozaimy, A. M., Soroushian, P., & Mirza, F. (1996). Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. Cement and Concrete Composites, 18(2), 85–92. https://doi.org/10.1016/0958-9465(95)00003-8
  • Al Qadi, A. N. S., & Al-Zaidyeen, S. M. (2014). Effect of fibre content and specimen shape on residual strength of polypropylene fibre self-compacting concrete exposed to elevated temperatures. Journal of King Saud University - Engineering Sciences, 26(1), 33–39. https://doi.org/10.1016/j.jksues.2012.12.002
  • ASCE. (1992). Structural fire protection, ASCE committee on fire protection. Structural Division.
  • ASTM C 1585. (2013). Standard test method for measurement of rate of absorption of water by hydraulic-. ASTM International, 4–9. https://doi.org/10.1520/C1585-13.2
  • ASTM C39-18. (2011). Compressive strength of cylindrical concrete specimen. ASTM Standards. https://doi.org/10.1520/C0150_C0150M-12
  • ASTM C 469. (2014). ASTM C469/C469M-14: Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. Annual Book of ASTM Standards. https://doi.org/10.1520/C0469
  • Atiş, C. D. (2002). Heat evolution of high-volume fly ash concrete. Cement and Concrete Research, 32(5), 751–756. https://doi.org/10.1016/S0008-8846(01)00755-4
  • Balgourinejad, N., Haghighifar, M., Madandoust, R., & Charkhtab, S. (2022). Experimental study on mechanical properties, microstructural of lightweight concrete incorporating polypropylene fibers and metakaolin at high temperatures. Journal of Materials Research and Technology, 18, 5238–5256. https://doi.org/10.1016/j.jmrt.2022.04.005
  • Banthia, N., Moncef, A., & Sheng, J. (1994). Uniaxial tensile response of cement composites reinforced with high volume fractions of carbon, steel, and polypropylene micro-fibers. ACI Symposium Publication, 146, 43–68. https://doi.org/10.14359/4588
  • Bentur, A. (2001, August). Role of interfaces in controlling durability of fiber-reinforced cements. Journal of Materials in Civil Engineering, 12(1), 2–7. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:1(2)
  • Bentur, A., Alexander, M. G., Bentz, D., Buyukozturk, O., Elsen, J., Hooton, D., Jennings, H., Katz, A., Kjellsen, K. O., Kronlof, A., Laggerblad, B., Mindess, S., Ollivier, J. P., Scrivener, K., Skalny, J., Struble, L. J., & Van Mier, J. G. M. (2000). Review of the work of the RILEM TC 159-ETC: Engineering of the interfacial transition zone in cementitious composites. Materials and Structures/Materiaux et Constructions, 33(226), 82–87. https://doi.org/10.1007/bf02484160
  • Chan, Y. N., Luo, X., & Sun, W. (2000). Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800 °C. Cement and Concrete Research, 30(2), 247–251. https://doi.org/10.1016/S0008-8846(99)00240-9
  • Chindaprasirt, P., Homwuttiwong, S., & Sirivivatnanon, V. (2004). Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement and Concrete Research, 34(7), 1087–1092. https://doi.org/10.1016/j.cemconres.2003.11.021
  • Choi, Y., & Yuan, R. L. (2005). Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cement and Concrete Research, 35(8), 1587–1591. https://doi.org/10.1016/j.cemconres.2004.09.010
  • Chousidis, N., Rakanta, E., Ioannou, I., & Batis, G. (2015). Mechanical properties and durability performance of reinforced concrete containing fly ash. Construction and Building Materials, 101, 810–817. https://doi.org/10.1016/j.conbuildmat.2015.10.127
  • Diederichs, U., Jumppanen, U. M., & Penttala, V. (1989). Behavior of high strength concrete at high temperatures: Vol. Report No. (Issue June 1989).
  • Dong, X., Ding, Y., & Wang, T. (2008). Spalling and mechanical properties of fiber reinforced high-performance concrete subjected to fire. Journal Wuhan University of Technology, Materials Science Edition, 23(5), 743–749. https://doi.org/10.1007/s11595-007-5743-5
  • EN:1992-1-2. (2004). Design of concrete structures. Part 1-2: General rules—structural fire design. Eurocode 2, European Committee for Standardization.
  • Fallah, S., & Nematzadeh, M. (2017). Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Construction and Building Materials, 132, 170–187. https://doi.org/10.1016/j.conbuildmat.2016.11.100
  • Guinea, G. V., El-Sayed, K., Rocco, C. G., Elices, M., & Planas, J. (2002). Properties of concrete produced from multicomponent blended cements. Cement and Concrete Research, 32(12), 1937–1942. https://doi.org/10.1016/S0008-8846(02)00907-9
  • Han, S. H., Kim, J. K., & Park, Y. D. (2003). Prediction of compressive strength of fly ash concrete by new apparent activation energy function. Cement and Concrete Research, 33(7), 965–971. https://doi.org/10.1016/S0008-8846(03)00007-3
  • Heo, Y. S., Sanjayan, J. G., Han, C. G., & Han, M. C. (2012). Relationship between inter-aggregate spacing and the optimum fiber length for spalling protection of concrete in fire. Cement and Concrete Research, 42(3), 549–557. https://doi.org/10.1016/j.cemconres.2011.12.002
  • Hossain, F. M. Z., Shahjalal, M., Islam, K., Tiznobaik, M., & Alam, M. S. (2019). Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber. Construction and Building Materials, 225, 983–996. https://doi.org/10.1016/j.conbuildmat.2019.07.245
  • Huang, W. H. (2001). Improving the properties of cement-fly ash grout using fiber and superplasticizer. Cement and Concrete Research, 31(7), 1033–1041. https://doi.org/10.1016/S0008-8846(01)00527-0
  • IS:10262. (2019, January). Concrete mix proportioning — Guidelines. Bureau of Indian Standards.
  • IS: 1199. (1959) . Methods of sampling and analysis of concrete. Bureau of Indian Standards.
  • IS:3085. (1965). Method of test for permeability of cement mortar and concrete. Bureau of Indian Standard.
  • IS 3812 : Part 1. (2003) . Pulverized fuel ash- Specification. Bureau of Indian Standards.
  • IS:383. (2016). Specification for coarse and fine aggregates from natural sources for concrete. Bureau of Indian Standards.
  • IS:4031. (1996). Method of physical tests for hydraulic cement. Bureau of Indian Satandards.
  • IS:456. (2000). Plain and reinforced concrete - Code of practice. Bureau of Indian Standards.
  • IS:516:1959. (2004). Method of tests for strength of concrete. Bureau Of Indian Standard.
  • IS:5816. (1999). Specification for splitting tensile strength of concrete -Method of test. Bureau of Indian Standard.
  • IS:8112. (2013). Indian standard ordinary Portland cement, 43 grade-Specification. Bureau of Indian Standards.
  • Kalifa, P., Chéné, G., & Gallé, C. (2001a). High-temperature behaviour of HPC with polypropylene fibres. Cement and Concrete Research, 31(10), 1487–1499. https://doi.org/10.1016/s0008-8846(01)00596-8
  • Kalifa, P., Chéné, G., & Gallé, C. (2001b). High-temperature behaviour of HPC with polypropylene fibres - From spalling to microstructure. Cement and Concrete Research, 31(10), 1487–1499. https://doi.org/10.1016/S0008-8846(01)00596-8
  • Karahan, O., & Atiş, C. D. (2011). The durability properties of polypropylene fiber reinforced fly ash concrete. Materials & Design, 32(2), 1044–1049. https://doi.org/10.1016/j.matdes.2010.07.011
  • Kayali, O., Haque, M., & Zhu, B. (2003). Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cement and Concrete Composites, 25(2), 207–213. https://doi.org/10.1016/S0958-9465(02)00016-1
  • Kim, G. Y., Kim, Y. S., & Lee, T. G. (2009). Mechanical properties of high-strength concrete subjected to high temperature by stressed test. Transactions of Nonferrous Metals Society of China (English Edition), 19(SUPPL. 1), s128–s133. https://doi.org/10.1016/S1003-6326(10)60260-9
  • Kırca, O., & Sahin, M. (2003). The influence of using polypropylene fiber on durability of white concrete. In 5th National Concrete Congress, Durability of Concrete, Istanbul (pp. 375–382).
  • Kirchhof, L. D., Lima, R. C. A. D., Neto, A. B. D. S. S., Quispe, A. C., & Filho, L. C. P. D. S. (2020). Effect of moisture content on the behavior of high strength concrete at high temperatures. Revista Materia, 25(1). https://doi.org/10.1590/s1517-707620200001.0898
  • Kodur, V., & Khaliq, W. (2011). Effect of temperature on thermal properties of different types of high-strength concrete. Journal of Materials in Civil Engineering, 23(6), 793–801. https://doi.org/10.1061/(asce)mt.1943-5533.0000225
  • Kumar, S., & Rai, B. (2019). Pulse velocity–Strength and elasticity relationship of high volume fly ash induced self-compacting concrete. Journal of Structural Integrity & Maintenance, 4(4), 216–229. https://doi.org/10.1080/24705314.2019.1657615
  • Kumar, S., & Rai, B. (2021). Durability performance and microstructure of binary blended high-performance concrete. Innovative Infrastructure Solutions, 6(3), 152. https://doi.org/10.1007/s41062-021-00525-w
  • Kumar, S., & Rai, B. (2022). Synergetic effect of fly ash and silica fume on the performance of high volume fly ash self-compacting concrete. Journal of Structural Integrity & Maintenance, 7(1), 61–74. https://doi.org/10.1080/24705314.2021.1892571
  • Kumar, S., Rai, B., Biswas, R., Samui, P., & Kim, D. (2020). Prediction of rapid chloride permeability of self-compacting concrete using multivariate adaptive regression spline and minimax probability machine regression. Journal of Building Engineering, 32, 101490. https://doi.org/10.1016/j.jobe.2020.101490
  • Kurda, R., de Brito, J., & Silvestre, J. D. (2017). Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cement and Concrete Composites, 84(2017), 198–213. https://doi.org/10.1016/j.cemconcomp.2017.09.009
  • Liu, L.-F., Wang, P.-M., & Yang, X.-J. (2005). Effect of polypropylene fiber on the dry-shrinkage ratio of cement mortar. Journal of Building Materials, 8(4), 373–377 .
  • Liu, X., Ye, G., De Schutter, G., Yuan, Y., & Taerwe, L. (2008). On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste. Cement and Concrete Research, 38(4), 487–499. https://doi.org/10.1016/j.cemconres.2007.11.010
  • Ma, Q., Guo, R., Zhao, Z., Lin, Z., & He, K. (2015). Mechanical properties of concrete at high temperature-A review. Construction and Building Materials, 93, 371–383. https://doi.org/10.1016/j.conbuildmat.2015.05.131
  • Nasser, K. W., & Marzouk, H. M. (1979). Properties of mass concrete containing fly ash at high temperatures. Journal of American Concrete Institute, 76(4), 537–550. https://doi.org/10.14359/6958
  • Noumowe, A. (2005). Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200°C. Cement and Concrete Research, 35(11), 2192–2198. https://doi.org/10.1016/j.cemconres.2005.03.007
  • Oktay, D., Akturk, B., & Kabay, N. (2014, January). Properties of cement mortars reinforced with polypropylene fibers. Sigma Journal of Engineering and Natural Sciences, 32, 164–175.
  • Poon, C. S., Lam, L., & Wong, Y. L. (2000). A study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research, 30(3), 447–455. https://doi.org/10.1016/S0008-8846(99)00271-9
  • Poon, C. S., Shui, Z. H., & Lam, L. (2004). Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cement and Concrete Research, 34(12), 2215–2222. https://doi.org/10.1016/j.cemconres.2004.02.011
  • Puertas, F., Amat, T., Fernández-Jiménez, A., & Vázquez, T. (2003). Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cement and Concrete Research, 33(12), 2031–2036. https://doi.org/10.1016/S0008-8846(03)00222-9
  • Qian, C. X., & Stroeven, P. (2000). Development of hybrid polypropylene-steel fibre-reinforced concrete. Cement and Concrete Research, 30(1), 63–69. https://doi.org/10.1016/S0008-8846(99)00202-1
  • Ramezanianpour, A. A., Esmaeili, M., Ghahari, S. A., & Najafi, M. H. (2013). Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Construction and Building Materials, 44, 411–418. https://doi.org/10.1016/j.conbuildmat.2013.02.076
  • Saha, A. K. (2018). Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research, 28(1), 25–31. https://doi.org/10.1016/j.serj.2017.09.001
  • Sanchayan, S., & Foster, S. J. (2016). High temperature behaviour of hybrid steel–PVA fibre reinforced reactive powder concrete. Materials and Structures/Materiaux et Constructions, 49(3), 769–782. https://doi.org/10.1617/s11527-015-0537-2
  • Sarshar, R., & Khoury, G. A. (1993). Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures. Magazine of Concrete Research, 45(162), 51–66. https://doi.org/10.1680/macr.1993.45.162.51
  • Serrano, R., Cobo, A., Prieto, M. I., & González, M. D. L. N. (2016). Analysis of fire resistance of concrete with polypropylene or steel fibers. Construction and Building Materials, 122, 302–309. https://doi.org/10.1016/j.conbuildmat.2016.06.055
  • Sideris, K. K., & Manita, P. (2013). Residual mechanical characteristics and spalling resistance of fiber reinforced self-compacting concretes exposed to elevated temperatures. Construction and Building Materials, 41, 296–302. https://doi.org/10.1016/j.conbuildmat.2012.11.093
  • Singh, N. K., & Rai, B. (2020). Assessment of synergetic effect on microscopic and mechanical properties of steel-polypropylene hybrid fiber reinforced concrete. Structural Concrete, 22(1), 516–534. https://doi.org/10.1002/suco.201900166
  • Sun, W., Yan, H., & Zhan, B. (2003). Analysis of mechanism on water-reducing effect of fine ground slag, high-calcium fly ash, and low-calcium fly ash. Cement and Concrete Research, 33(8), 1119–1125. https://doi.org/10.1016/S0008-8846(03)00022-X
  • Tanyildizi, H., & Coskun, A. (2008). The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash. Construction and Building Materials, 22(11), 2269–2275. https://doi.org/10.1016/j.conbuildmat.2007.07.033
  • Toutanji, H. A. (1999). Properties of polypropylene fiber reinforced silica fume expansive-cement concrete. Construction and Building Materials, 13(4), 171–177. https://doi.org/10.1016/S0950-0618(99)00027-6
  • Xu, Y., Wong, Y. L., Poon, C. S., & Anson, M. (2001). Impact of high temperature on PFA concrete. Cement and Concrete Research, 31(7), 1065–1073. https://doi.org/10.1016/S0008-8846(01)00513-0
  • Zhang, P., Han, X., Hu, S., Wang, J., & Wang, T. (2022). High-temperature behavior of polyvinyl alcohol fiber-reinforced metakaolin/fly ash-based geopolymer mortar. Composites Part B Engineering, 244, 110171. https://doi.org/10.1016/j.compositesb.2022.110171

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.