482
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of corrosion-based section loss on morphology and tensile capacity of pre-stressing strands

, , , &

References

  • Andrade, C. (2017). Reliability analysis of corrosion onset: Initiation limit state. Journal of Structural Integrity & Maintenance, 2(4), 200–10. https://doi.org/10.1080/24705314.2017.1388693
  • Andrade, C., Alonso, C., Gonzalez, J. A., Andrade, C., Alonso, C., & Rodriguez, J. (1989, September 6-8). Remaining service life of corroding structures remaining service life of corroding structures, durability of structures. IABSE Symposium. (Iabse Report Volume 57/1). https://doi.org/10.5169/seals-44238
  • Angst, U. M. (2018). Challenges and opportunities in corrosion of steel in concrete. Materials and Structures/Materiaux et Constructions, 51(1). https://doi.org/10.1617/s11527-017-1131-6
  • Arunkumar, Y. M., Prashanth, S., Pandit, P., Girish, M. G., & Shetty, A. (2023). Finite element analysis of bond behavior in corroded reinforced concrete beams: State-of-the-art. Journal of Applied Engineering Science, 21(4), 1031–1042. https://doi.org/10.5937/jaes0-42252
  • ASTM G1 03. (2011). In American society for testing and materials : Vol. G1 03.
  • Belletti, B., Rodríguez, J., Andrade, C., Franceschini, L., Sánchez Montero, J., & Vecchi, F. (2020). Experimental tests on shear capacity of naturally corroded prestressed beams. Structural Concrete, 21(5), 1777–1793. https://doi.org/10.1002/suco.202000205
  • Bureau of Indian Standards, B. (n.d.-a). IS 14268-1995: Uncoated stress relieved low relaxation seven-ply strand for prestressed concrete -.
  • Bureau of Indian Standards, B. (n.d.-b). IS 6006-1983: Uncoated stress relieved strand for prestressed concrete.
  • Burgatti, J. C., & Lacerda, R. A. (2009). Standard specification for low-relaxation, seven-wire steel strand for prestressed concrete 1. American Society for Testing and Materials, 43(1), 237–244. https://doi.org/10.1520/A0416_A0416M-18
  • Campione, G., & Zizzo, M. (2022). Influence of strands corrosion on the flexural behavior of prestressed concrete beams. Structures, 45(September), 1366–1375. https://doi.org/10.1016/j.istruc.2022.09.073
  • Chai, X., Shang, H., & Zhang, C. (2021). Bond behavior between corroded steel bar and concrete under sustained load. Construction and Building Materials, 310, 125122. https://doi.org/10.1016/j.conbuildmat.2021.125122
  • Cui, W., Liu, M., Wang, L., Guan, W., Song, H., & Li, F. (2022). Experimental study on deterioration characteristics of prestressed concrete under the coupling of freeze–thaw and corrosion. Journal of Materials in Civil Engineering, 34(2), 1–13. https://doi.org/10.1061/(asce)mt.1943-5533.0004084
  • Dai, L., Bian, H., Wang, L., Potier-Ferry, M., & Zhang, J. (2020). Prestress loss diagnostics in pretensioned concrete structures with corrosive cracking. Journal of Structural Engineering, 146(3). https://doi.org/10.1061/(asce)st.1943-541x.0002554
  • Franceschini, L., Belletti, B., Tondolo, F., & Sanchez Montero, J. (2022). A simplified stress–strain relationship for the mechanical behavior of corroded prestressing strands: The SCPS-model. Structural Concrete. https://doi.org/10.1002/suco.202200170
  • Giriraju, R., Sengupta, A. K., & Pillai, R. G. (2022). Tensile behaviour of corroded strands in prestressed concrete systems. Journal of the Institution of Engineers (India): Series A, 103(3), 867–879. https://doi.org/10.1007/s40030-022-00656-y
  • Griess, J. C., & Naus, D. (1980). Corrosion of steel tendons used in prestressed concrete pressure vessels. American Society for Testing and Materials. www.astm.org
  • Hansson, C. M. (2016). An introduction to corrosion of engineering materials. In Corrosion of steel in concrete structures (pp. 3–18). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-381-2.00001-8
  • Jeon, C. H., Lee, J. B., Lon, S., & Shim, C. S. (2019). Equivalent material model of corroded prestressing steel strand. Journal of Materials Research and Technology, 8(2), 2450–2460. https://doi.org/10.1016/j.jmrt.2019.02.010
  • Lequesne, Rémy, D., Jokymaityte, M., Mirnajafizadeh, A., Carty, C. P., Lloyd, D., & Stewart, R. A. (2019). Development of 18 quality control gates for additive manufacturing of error free patient-specific implants. American Society for Testing and Materials, 12(19), 1061. https://doi.org/10.3390/ma12193110
  • Li, F., Yuan, Y., & Li, C. Q. (2011). Corrosion propagation of prestressing steel strands in concrete subject to chloride attack. Construction and Building Materials, 25(10), 3878–3885. https://doi.org/10.1016/j.conbuildmat.2011.04.011
  • Li, J., Miki, T., Yang, Q., & Mao, M. (2022). Experimental study on prestressing force of corroded prestressed concrete steel strands. Journal of Advanced Concrete Technology, 20(9), 550–563. https://doi.org/10.3151/jact.20.550
  • Li, J., Miki, T., Yang, Q., & Mao, M. (2023). Influence of corrosion conditions on prestressing force and residual tensile capacity of corroded prestressed concrete steel strands. Journal of Advanced Concrete Technology, 21(11), 956–970. https://doi.org/10.3151/jact.21.956
  • Menoufy, A. E., & Soudki, K. (2014). Flexural behavior of corroded pretensioned girders repaired with CFRP sheets. PCI Journal, 59(2), 129–143. https://doi.org/10.15554/pcij.03012014.129.143
  • Moser, R. D., Singh, P. M., Kahn, L. F., & Kurtis, K. E. (2011). Chloride-induced corrosion of prestressing steels considering crevice effects and surface imperfections. Corrosion, 67(6), 1–14. https://doi.org/10.5006/1.3595096
  • Nossoni, G., & Harichandran, R. (2012). Current efficiency in accelerated corrosion testing of concrete. Corrosion, 68(9), 801–809. https://doi.org/10.5006/0428
  • Nürnberger, U. (2002). Corrosion induced failure mechanisms of prestressing steel. Materials & Corrosion, 53(8), 591–601. https://doi.org/10.1002/1521-4176(200208)53:8<591:AID-MACO591>3.0.CO;2-X
  • Oparaodu, K. O., & Okpokwasili, G. C. (2014). Comparison of percentage weight loss and corrosion rate trends in different metal coupons from two soil environments. International Journal of Environmental Bioremediation & Biodegradation, 2(5), 243–249. https://doi.org/10.12691/ijebb-2-5-5
  • Rajbanul Akhond, M., Irfan, A., & Sharif, A. (2023). An overview of corrosion behavior and contemporary management techniques of thermomechanically treated rebars in concrete structures. Journal of Structural Integrity & Maintenance, 1–20. https://doi.org/10.1080/24705314.2023.2259721
  • Rengaraju, S., Godara, A., Alapati, P., & Pillai, R. G. (2020). Macrocell corrosion mechanisms of prestressing strands in various concretes. Magazine of Concrete Research, 72(4), 194–206. https://doi.org/10.1680/jmacr.18.00284
  • Sadhasivam, K., Bella Canet, E., Wendling, A., & Floyd, R. W. (2017). Effect of vertical strand location on bond performance of prestressing strands cast in lightweight self-consolidating concrete. Journal of Structural Integrity & Maintenance, 2(1), 39–47. https://doi.org/10.1080/24705314.2017.1280588
  • Saraswathy, V., Lee, H. S., Karthick, S., & Kwon, S. J. (2018). Stress corrosion behavior of ungrouted pretensioned concrete beams. Advances in Materials Science and Engineering, 2018, 1–11. https://doi.org/10.1155/2018/8585162
  • Sason, A. S. (1992). Evaluation of degree of rusting on prestressed concrete strand. PCI Journal, 37(3), 25–30. https://doi.org/10.15554/pcij.05011992.25.30
  • Scott Calabrese Barton, B., Vermaas, G. W., Member, S., Duby, P. F., West, A. C., & Betti, R. (2000). Accelerated corrosion and embrittlement of high-strength bridge wire. Journal of Materials in Civil Engineering, 12(2000), 33–38. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:1(33)
  • Song, J., Chen, F., & Guo, G. (2020). Corrosion and microstructure behaviour of steel strand used in bridges. Integrated Ferroelectrics, 207(1), 27–36. https://doi.org/10.1080/10584587.2020.1728662
  • Su, X., Ma, Y., Wang, L., Guo, Z., & Zhang, J. (2022). Fatigue life prediction for prestressed concrete beams under corrosion deterioration process. Structures, 43(March), 1704–1715. https://doi.org/10.1016/j.istruc.2022.07.043
  • Sun, J., & Hong, H. P. (2002). Effect of reinforcement corrosion on reliability of bridge girders. Civil Engineering and Environmental Systems, 19(1), 67–85. https://doi.org/10.1080/10286600212160
  • Tran, D. V. P., Sancharoen, P., Klomjit, P., Tangtermsirikul, S., & Nguyen, T. H. Y. (2023). Prediction equations for corrosion rate of reinforcing steel in cement-fly ash concrete. Journal of Structural Integrity & Maintenance, 8(2), 91–99. https://doi.org/10.1080/24705314.2023.2165749
  • Trejo, D., Pillai, R. G., Hueste, M. B. D., Reinschmidt, K. F., & Gardoni, P. (2009). Parameters influencing corrosion and tension capacity of post-tensioning strands. ACI Materials Journal, 106(2), 144–153. https://doi.org/10.14359/56461
  • Turnbull, A., McCartney, L. N., & Zhou, S. (2006). Modelling of the evolution of stress corrosion cracks from corrosion pits. Scripta materialia, 54(4 SPEC. ISS.), 575–578. https://doi.org/10.1016/j.scriptamat.2005.10.053
  • Vecchi, F., Franceschini, L., Tondolo, F., Belletti, B., Sánchez Montero, J., & Minetola, P. (2021). Corrosion morphology of prestressing steel strands in naturally corroded PC beams. Construction and Building Materials, 296, 123720. https://doi.org/10.1016/j.conbuildmat.2021.123720
  • Vélez, W., Matta, F., & Ziehl, P. (2016). Electrochemical characterization of early corrosion in prestressed concrete exposed to salt water. Materials and Structures/Materiaux et Constructions, 49(1–2), 507–520. https://doi.org/10.1617/s11527-014-0514-1
  • Vu, N. A., Castel, A., & François, R. (2009). Effect of stress corrosion cracking on stress-strain response of steel wires used in prestressed concrete beams. Corrosion Science, 51(6), 1453–1459. https://doi.org/10.1016/j.corsci.2009.03.033
  • Wang, L., Li, T., Dai, L., Chen, W., & Huang, K. (2020). Corrosion morphology and mechanical behavior of corroded prestressing strands. Journal of Advanced Concrete Technology, 18(10), 545–557. https://doi.org/10.3151/jact.18.545