1,093
Views
0
CrossRef citations to date
0
Altmetric
Articles

Abnormal network packets identification using header information collected from Honeywall architecture

, ORCID Icon, &
Pages 437-461 | Received 06 Dec 2022, Accepted 12 May 2023, Published online: 23 May 2023

References

  • Abd, N., Alheeti, K. M. A., & Al-Rawi, S. S. (2020, December). Intelligent intrusion detection system in internal communication systems for driverless cars. Webology, 17(2), 376–393. https://doi.org/10.14704/WEB/V17I2/WEB17039
  • Albaqami, H., Hassan, G. M., Subasi, A., & Datta, A. (2021, September). Automatic detection of abnormal EEG signals using wavelet feature extraction and gradient boosting decision tree. Biomedical Signal Processing and Control, 70, Article 102957. https://doi.org/10.1016/j.bspc.2021.102957
  • Aung, K. M., & Htaik, N. M. (2020). Anomaly detection in SDN's control plane using combining entropy with SVM. In 2020 17th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON) (pp. 122–126). Phuket: IEEE. https://doi.org/10.1109/ECTI-CON49241.2020.9158222
  • Dong, Y. (2021, June). Design of an automatic detection system for abnormal communication data packets of electronic equipment. Wireless Personal Communications, 127(2), 1503–1516. https://doi.org/10.1007/s11277-021-08701-y
  • Farey, G. L. U., Adha, M., Kurniawan, S. Y., Salsabilla, C. A., Rahman, A., & Reza, M. (2023). Wireless network monitoring using snort. JComce - Journal of Computer Science, 2(2). https://jurnal.teknologiriau.net/index.php/jcomce/article/view/11.
  • Feng, C., Li, T., & Chana, D. (2017). Multi-level anomaly detection in industrial control systems via package signatures and LSTM networks. In 2017 47th annual IEEE/IFIP international conference on dependable systems and networks (DSN) (pp. 261–272). Denver, CO: IEEE. https://doi.org/10.1109/DSN.2017.34
  • Franco, J., Aris, A., Canberk, B., & Uluagac, A. S. (2021). A survey of honeypots and honeynets for internet of things, industrial internet of things, and cyber-physical systems. IEEE Communications Surveys & Tutorials, 23(4), 2351–2383. https://doi.org/10.1109/COMST.2021.3106669
  • Jo, W., Kim, S., Lee, C., & Shon, T. (2020, July). Packet preprocessing in CNN-based network intrusion detection system. Electronics, 9(7), Article 1151. https://doi.org/10.3390/electronics9071151
  • Kaur, G. (2016). A preventive approach to mitigate the effects of gray hole attack using genetic algorithm. In 2016 international conference on advances in computing, communication, and automation (ICACCA) (spring) (pp. 1–8). Dehradun: IEEE. https://doi.org/10.1109/ICACCA.2016.7578899
  • Krishnaveni, S., & Prabakaran, S. (2019, May). Ensemble approach for network threat detection and classification on cloud computing. Concurrency and Computation: Practice and Experience, 33(3). https://doi.org/10.1002/cpe.5272
  • Kwon, S., Yoo, H., & Shon, T. (2019). RNN-based anomaly detection in dnp3 transport layer. In 2019 IEEE international conference on communications, control, and computing technologies for smart grids (SmartGridComm) (pp. 1–7). IEEE. https://doi.org/10.1109/SmartGridComm.2019.8909701
  • Larriva-Novo, X. A., Vega-Barbas, M., Villagrá, V. A., & Sanz Rodrigo, M. (2020). Evaluation of cybersecurity data set characteristics for their applicability to neural networks algorithms detecting cybersecurity anomalies. IEEE Access, 8, 9005–9014. https://doi.org/10.1109/ACCESS.2019.2963407
  • Li, X., Chen, W., Zhang, Q., & Wu, L. (2020, August). Building auto-encoder intrusion detection system based on random forest feature selection. Computers & Security, 95, Article 101851. https://doi.org/10.1016/j.cose.2020.101851
  • Liu, H., Lang, B., Liu, M., & Yan, H. (2019, January). CNN and RNN based payload classification methods for attack detection. Knowledge-Based Systems, 163, 332–341. https://doi.org/10.1016/j.knosys.2018.08.036
  • Longari, S., Nova Valcarcel, D. H., Zago, M., Carminati, M., & Zanero, S. (2021). Cannolo: An anomaly detection system based on LSTM autoencoders for controller area network. IEEE Transactions on Network and Service Management, 18(2), 1913–1924. https://doi.org/10.1109/TNSM.2020.3038991
  • Maesschalck, S., Giotsas, V., Green, B., & Race, N. (2022, March). Don't get stung, cover your ICS in honey: How do honeypots fit within industrial control system security. Computers and Security, 114, Article 102598. https://doi.org/10.1016/j.cose.2021.102598
  • Mishra, S. (2021). Detection and mitigation of attacks in SDN-based IoT network using SVM. International Journal of Computer Applications in Technology, 65(3), Article 270. https://doi.org/10.1504/IJCAT.2021.116009
  • Nguyen, T. H., Prifti, E., Sokolovska, N., & Zucker, J. (2019, 3). Disease prediction using synthetic image representations of metagenomic data and convolutional neural networks. In Proceedings of the 13th IEEE-RIVF international conference on computing and communication technologies (pp. 231–236). IEEE.
  • Nguyen, T. H., & Zucker, J.-D. (2019). Enhancing metagenome-based disease prediction by unsupervised binning approaches. In The 2019 11th international conference on knowledge and systems engineering (KSE-IEEE) (pp. 381–385). IEEE. ISSN 978-1-7281-3003-3. https://doi.org/10.1109/KSE.2019.8919295
  • Nguyen, V. K., Nhat Quang Truong, M., Le, V. L., Thang Le, Q., & Nguyen, T. H. (2019). A novel approach for data collection and network attack warning. In 2019 11th international conference on knowledge and systems engineering (KSE) (pp. 1–6). IEEE. https://doi.org/10.1109/KSE.2019.8919494
  • Niandong, L., Yanqi, S., Sheng, S., Xianshen, H., & Haoliang, M. (2020, July). Detection of probe flow anomalies using information entropy and random forest method. Journal of Intelligent and Fuzzy Systems, 39(1), 433–447. https://doi.org/10.3233/JIFS-191448
  • Ozsahin, D. U., Taiwo Mustapha, M., Mubarak, A. S., Said Ameen, Z., & Uzun, B. (2022). Impact of feature scaling on machine learning models for the diagnosis of diabetes. In 2022 international conference on artificial intelligence in everything (pp. 87–94). IEEE. https://doi.org/10.1109/AIE57029.2022.00024
  • Park, S. H., Park, H. J., & Choi, Y.-J. (2020). RNN-based prediction for network intrusion detection. In 2020 international conference on artificial intelligence in information and communication (ICAIIC) (pp. 572–574). IEEE. https://doi.org/10.1109/ICAIIC48513.2020.9065249
  • Patel, N., Mehtre, B., & Wankar, R. (2023). A snort-based secure edge router for smart home. International Journal of Sensor Networks, 41(1), Article 42. https://doi.org/10.1504/IJSNET.2023.128505
  • Perkins, R. C., & Howell, C. J. (2021). Honeypots for cybercrime research. In A. Lavorgna, & T. J. Holt (Eds.), Researching cybercrimes (pp. 233–261). East Lansing, MI: Springer International Publishing. https://doi.org/10.1007/978-3-030-74837-1_12
  • Provos, N., & Holz, T. (2007, July). Virtual honeypots. Addison-Wesley Educational.
  • Putri, A. A., Agustina, C., Fauzan, H., Saputra, M. R. E., Erdiansyah, M., & Wardani, P. S. (2023, January). Network security implementation with snort-based intrusion detection system using windows 10. JComce - Journal of Computer Science, 1(1). https://jurnal.teknologiriau.net/index.php/jcomce/article/view/49.
  • Ren, J., Zhang, C., & Hao, Q. (2021). A theoretical method to evaluate honeynet potency. Future Generation Computer Systems, 116, 76–85. https://doi.org/10.1016/j.future.2020.08.021
  • Salim, M. M., Singh, S. K., & Park, J. H. (2021, December). Securing smart cities using LSTM algorithm and lightweight containers against botnet attacks. Applied Soft Computing, 113, Article 107859. https://doi.org/10.1016/j.asoc.2021.107859
  • Sharma, S., Nand, P., & Sharma, P. (2022). Intrusion detection and prevention systems using snort. In S. Borah, S. K. Mishra, B. K. Mishra, V. E. Balas, & Z. Polkowski (Eds.), Advances in data science and management (pp. 473–486). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-5685-9_46
  • Sheikh, A. (2021). Evading intrusion detection systems, firewalls, and honeypots. In Certified ethical hacker (CEH) preparation guide (pp. 153–164). Apress. https://doi.org/10.1007/978-1-4842-7258-9_13
  • Sheng, C., Yao, Y., Fu, Q., Yang, W., & Liu, Y. (2021, September). Study on the intelligent honeynet model for containing the spread of industrial viruses. Computers and Security, 111, Article 102460. https://doi.org/10.1016/j.cose.2021.102460
  • Song, Y., Bu, B., & Yang, X. (2020). Hybrid intrusion detection with decision tree and critical state analysis for CBTC. In B. Liu, L. Jia, Y. Qin, Z. Liu, L. Diao, & M. An (Eds.), Lecture notes in electrical engineering (pp. 153–161). Springer Singapore.
  • Spiekermann, D., & Keller, J. (2021, June). Unsupervised packet-based anomaly detection in virtual networks. Computer Networks, 192, Article 108017. https://doi.org/10.1016/j.comnet.2021.108017
  • Staudemeyer, R. C., & Omlin, C. W. (2014, June). Extracting salient features for network intrusion detection using machine learning methods. South African Computer Journal, 52, 82–96. https://doi.org/10.18489/sacj.v52i0.200
  • Sturm, R., Pollard, C., & Craig, J. (2017). Managing containerized applications. In Application performance management (APM) in the digital enterprise (pp. 177–185). Elsevier. https://doi.org/10.1016/b978-0-12-804018-8.00013-9
  • Su, M.-Y. (2011). Real-time anomaly detection systems for denial-of-service attacks by weighted k-nearest-neighbor classifiers. Expert Systems with Applications, 38(4), 3492–3498. https://doi.org/10.1016/j.eswa.2010.08.137
  • Subba, B., Biswas, S., & Karmakar, S. (2016). A neural network based system for intrusion detection and attack classification. In 2016 twenty second national conference on communication (NCC) (pp. 1–6). IEEE. https://doi.org/10.1109/NCC.2016.7561088
  • Sun, Y. (2016, April). The study on network information security. In 2016 international conference on network and information systems for computers (ICNISC). IEEE. https://doi.org/10.1109/icnisc.2016.028
  • Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the KDD cup 99 data set. In 2009 IEEE symposium on computational intelligence for security and defense applications (pp. 1–6). IEEE. https://doi.org/10.1109/CISDA.2009.5356528
  • Tharwat, A., Gaber, T., Ibrahim, A., & Hassanien, A. E. (2017, May). Linear discriminant analysis: A detailed tutorial. AI Communications, 30(2), 169–190. https://doi.org/10.3233/AIC-170729
  • Vetterl, A., Clayton, R., & Walden, I. (2019). Counting outdated honeypots: Legal and useful. In 2019 IEEE security and privacy workshops (SPW) (pp. 224–229). IEEE. https://doi.org/10.1109/SPW.2019.00049
  • Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-Nemrat, A., & Venkatraman, S. (2019). Deep learning approach for intelligent intrusion detection system. IEEE Access, 7, 41525–41550. https://doi.org/10.1109/Access.6287639
  • Wakui, T., Kondo, T., & Teraoka, F. (2021, August). GAMPAL: An anomaly detection mechanism for internet backbone traffic by flow size prediction with LSTM-RNN. Annals of Telecommunications, 77, 437–454. https://doi.org/10.1007/s12243-021-00874-8
  • Wang, H., He, H., Zhang, W., Liu, W., Liu, P., & Javadpour, A. (2022, September). Using honeypots to model botnet attacks on the internet of medical things. Computers and Electrical Engineering, 102, Article 108212. https://doi.org/10.1016/j.compeleceng.2022.108212
  • Yusof, M. H. M., Almohammedi, A. A., Shepelev, V., & Ahmed, O. (2022). Visualizing realistic benchmarked ids dataset: Cira-cic-dohbrw-2020. IEEE Access, 10, 94624–94642. https://doi.org/10.1109/ACCESS.2022.3204690
  • Zhong, Y., Chen, W., Wang, Z., Chen, Y., Wang, K., Li, Y., Yin, X., Shi, X., Yang, J., & Li, K. (2020, March). HELAD: A novel network anomaly detection model based on heterogeneous ensemble learning. Computer Networks, 169, Article 107049. https://doi.org/10.1016/j.comnet.2019.107049