1,557
Views
4
CrossRef citations to date
0
Altmetric
Articles

Impact of exoD gene knockout on the polyhydroxybutyrate overaccumulating mutant Mt_a24

ORCID Icon, ORCID Icon, , , , , ORCID Icon, & show all
Pages 1-18 | Received 02 Oct 2020, Accepted 30 Nov 2020, Published online: 11 Jan 2021

References

  • European Commission. A European strategy for plastics in a circular economy. zuletzt geprüft am. 2019;11(8):2020.
  • Machalaba C, Romanelli C, Stoett P, et al. Climate change and health: transcending silos to find solutions. Ann Glob Health. 2015;81(3):445–458.
  • Lackner M. Bioplastics. In: Kirk-Othmer, editor. Inc (Hg.) 2015 – kirk-othmer encyclopedia of chemical technology, Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2015, pp. S. 1–41. doi:https://doi.org/10.1002/0471238961.koe00006.
  • Bekker A, Holland HD, Wang P-L, et al. Dating the rise of atmospheric oxygen. Nature. 2004;427(6970):117–120.
  • Cardona T. Early Archean origin of heterodimeric Photosystem I. Heliyon. 2018;4(3):e00548.
  • Darko E, Heydarizadeh P, Schoefs B, et al. Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philos Trans R Soc Lond B Biol Sci. 2014;369(1640):S. 20130243.
  • Dutkiewicz A, Volk H, George SC, et al. Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the great oxidation event. Geol. 2006;34(6):S. 437.
  • Schirrmeister BE, de Vos JM, Antonelli A, et al. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the great oxidation event. Proc Nat Acad Sci. 2013;110(5):1791–1796.
  • Szathmáry E, Smith JM. The major evolutionary transitions. Nature. 1995;374(6519):227–232.
  • Carpine R, Du W, Olivieri G, et al. Genetic engineering of Synechocystis sp. PCC6803 for poly-β-hydroxybutyrate overproduction. Algal Res. 2017;25:S. 117–127.
  • Gundolf R, Oberleitner S, Richter J. Evaluation of new genetic toolkits and their role for ethanol production in cyanobacteria. Energies. 2019;12(18):S. 3515.
  • Kamravamanesh D, Lackner M, Herwig C. Bioprocess engineering aspects of sustainable polyhydroxyalkanoate production in cyanobacteria. Bioengineering (Basel). 2018b;5(4). DOI:https://doi.org/10.3390/bioengineering5040111
  • Lau N-S, Matsui M, Abdullah -A-A-A. Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. Biomed Res Int. 2015;2015:S. 754934.
  • Hempel F, Bozarth AS, Lindenkamp N, et al. Microalgae as bioreactors for bioplastic production. Microb Cell Fact. 2011;10:S. 81.
  • Lackner M, Kamravamanesh D, Krampl M, et al. Characterization of photosynthetically synthesized poly(3-hydroxybutyrate) using a randomly mutated strain of Synechocystis sp. PCC 6714. Int J Biobased Plast. 2019;1(1):48–59.
  • Markl E, Grünbichler H, Lackner M. Cyanobacteria for PHB bioplastics production: a review. In: Wong YK, editor. Algae. London, UK: IntechOpen; 2018, p. 1–10. doi:https://doi.org/10.5772/intechopen.81536
  • Khetkorn W, Incharoensakdi A, Lindblad P, et al. Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Bioresour Technol. 2016;214:761–768.
  • Wu GF, Shen ZY, Wu QY. Modification of carbon partitioning to enhance PHB production in Synechocystis sp. PCC6803. Enzyme Microb Technol. 2002;30(6):710–715.
  • Kopf M, Klähn S, Pade N, et al. Comparative genome analysis of the closely related Synechocystis strains PCC 6714 and PCC 6803. DNA Res. 2014;21(3):S. 255–266.
  • Kamravamanesh D, Kovacs T, Pflügl S, et al. Increased poly-β-hydroxybutyrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714. Mutant generation and characterization. Bioresour Technol. 2018a;266:34–44.
  • Fisher ML, Allen R, Luo Y, et al. Export of extracellular polysaccharides modulates adherence of the Cyanobacterium synechocystis. PloS One. 2013;8(9):e74514.
  • Pembroke JT, Balakrishnan N, Armshaw P. The potential of the photoautotroph synechocystis for metal bioremediation. In: Shiomi N, editor. Advances in bioremediation of wastewater and polluted soil: inTech. London, UK: IntechOpen; 2015, p. 51–72. DOI:https://doi.org/10.5772/60514.
  • Simkovsky R, Daniels EF, Tang K, et al. Impairment of O-antigen production confers resistance to grazing in a model amoeba-cyanobacterium predator-prey system. Proc Nat Acad Sci. 2012;109(41):S. 16678–16683.
  • Jittawuttipoka T, Planchon M, Spalla O, et al. Multidisciplinary evidences that Synechocystis PCC6803 exopolysaccharides operate in cell sedimentation and protection against salt and metal stresses. PloS One. 2013;8(2):e55564.
  • Shen L, Li Z, Wang J, et al. Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd(II) by Synechocystis sp. PCC6803. Environ Sci Pollut Res Int. 2018;25(21):20713–20722.
  • Bahat-Samet E, Castro-Sowinski S, Okon Y. Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirillum brasilense. FEMS Microbiol Lett. 2004;237(2):195–203.
  • Fischer SE, Miguel MJ, Mori GB. Effect of root exudates on the exopolysaccharide composition and the lipopolysaccharide profile of Azospirillum brasilense Cd under saline stress. FEMS Microbiol Lett. 2003;219(1):53–62.
  • Panhota RS, Bianchini I, Vieira AAH. Glucose uptake and extracellular polysaccharides (EPS) produced by bacterioplankton from an eutrophic tropical reservoir (Barra Bonita, SP–Brazil). Hydrobiologia. 2007;583(1):223–230.
  • Pereira S, Zille A, Micheletti E, et al. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev. 2009;33(5):917–941.
  • Pereira SB, Santos M, Leite JP, et al. The role of the tyrosine kinase Wzc (Sll0923) and the phosphatase Wzb (Slr0328) in the production of extracellular polymeric substances (EPS) by Synechocystis PCC 6803. MicrobiologyOpen. 2019;8(6):e00753.
  • Ricciardi A, Parente E, Crudele MA, et al. Exopolysaccharide production by Streptococcus thermophilus SY: production and preliminary characterization of the polymer. J Appl Microbiol. 2002;92(2):297–306.
  • Vaningelgem F, Zamfir M, Mozzi F, et al. Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl Environ Microbiol. 2004;70(2):S. 900–912.
  • de Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev. 1999;23(2):153–177.
  • Reeves PR, Hobbs M, Valvano MA, et al. Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol. 1996;4(12):495–503.
  • Hu C. Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohydr Polym. 2003;54(1):33–42.
  • de Philippis R, Sili C, Paperi R, et al. Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol. 2001;13(4):293–299.
  • de Philippis R, Vincenzini M. Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev. 1998;22(3):151–175.
  • Stanier RY, Kunisawa R, Mandel M, et al. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971;35(2):171–205.
  • Formighieri C, Melis A. Regulation of beta-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. Planta. 2014;240(2):309–324.
  • Mülhardt C. Der Experimentator Molekularbiologie/Genomics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013.
  • Ludwig A, Heimbucher T, Gregor W, et al. Transformation and gene replacement in the facultatively chemoheterotrophic, unicellular cyanobacterium Synechocystis sp. PCC6714 by electroporation. Appl Microbiol Biotechnol. 2008;78(4):729–735.
  • Kamravamanesh D, Pflügl S, Nischkauer W, et al. Photosynthetic poly-β-hydroxybutyrate accumulation in unicellular cyanobacterium Synechocystis sp. PCC 6714. AMB Express. 2017;7(1):S. 143.
  • Kamravamanesh D, Slouka C, Limbeck A, et al. Increased carbohydrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: bioprocess understanding and evaluation of productivities. Bioresour Technol. 2019;273:277–287.
  • Schirmer M (2015): Bestimmung und Optimierung verfahrenstechnischer und metabolischer Kenngrößen bei photoautotrophen Mikroorganismen unter Verwendung nichtlinearer Optimierungsalgorithmen. Dissertation. Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen. Lehrstuhl für Bioverfahrenstechnik.
  • Yoo S-H, Keppel C, Spalding M, et al. Effects of growth condition on the structure of glycogen produced in cyanobacterium Synechocystis sp. PCC6803. Int J Biol Macromol. 2007;40(5):498–504.
  • Grundel M, Scheunemann R, Lockau W, et al. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology. 2012;158(Pt 12):S. 3032–3043.