1,621
Views
2
CrossRef citations to date
0
Altmetric
Articles

Sustainable aerogels derived from bio-based 2,5-diformylfuran and depolymerization products of lignin

, &
Pages 29-39 | Received 08 Oct 2020, Accepted 10 Jan 2021, Published online: 03 Feb 2021

References

  • Hu LAH, Bai X. Producing high yield of levoglucosan by pyrolyzing nonthermal plasma-pretreated cellulose. Green Chem. 2020;22:2036.
  • Delidovich I, Leonhard K, Palkovits R. Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering. Energy Environ Sci. 2014;7:2803.
  • Luo Z, Qin S, Chen S, et al. Selective conversion of lignin to ethylbenzene. Green Chem. 2020;22:1842.
  • Kamm B, Gruber PR, Kamm M. Ullmann’s encyclopedia of industrial chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. p. 1.
  • Agarwal A, Rana M, Park J-H. Advancement in technologies for the depolymerization of lignin. Fuel Process Technol. 2018;181:115.
  • Sun Z, Fridrich B, de Santi A, et al. Bright Side of Lignin Depolymerization: toward New Platform Chemicals. Chem Rev. 2018;118(2):614.
  • Wang H, Tucker M, Ji Y. Recent Development in Chemical Depolymerization of Lignin: A Review. J Appl Chem. 2013;2013:1.
  • Wendisch VF, Kim Y, Lee J-H. Chemicals from lignin: recent depolymerization techniques and upgrading extended pathways. Cur Opin Green Sustain Chem. 2018;14:33. .
  • Mirzaeian M, Hall PJ. The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels. J Mater Sci. 2009;44(10):2705.
  • Kistler SS. Coherent Expanded-Aerogels. J Phys Chem. 1932;36:52.
  • Pekala RW. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci. 1989;24:3221.
  • Lee Y, Choi J-W, Suh DJ, et al. Ketonization of hexanoic acid to diesel-blendable 6-undecanone on the stable zirconia aerogel catalyst. Appl Catal A Gen. 2015;506:288.
  • Buratti C, Moretti E, Belloni E, et al. Development of Innovative Aerogel Based Plasters: preliminary Thermal and Acoustic Performance Evaluation. Sustainability. 2014;6:5839.
  • Gui X, Wei J, Wang K, et al. Carbon Nanotube Sponges. Adv Mater. 2010;22:617.
  • Dong X-C, Xu H, Wang X-W, et al. 3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano. 2012;6:3206.
  • Abbas Q, Mirzaeian M, Ogwu AA. Electrochemical performance of controlled porosity resorcinol/formaldehyde based carbons as electrode materials for supercapacitor applications. Int J Hydrogen Energy. 2017;42:25588.
  • Allahbakhsh A, Bahramian AR. Self-assembled and pyrolyzed carbon aerogels: an overview of their preparation mechanisms, properties and applications. Nanoscale. 2015;7:14139.
  • Biener J, Stadermann M, Suss M, et al. Advanced carbon aerogels for energy applications. Energy Environ. Sci. 2011;4:656.
  • Chen B, Zheng Q, Zhu J, et al. Mechanically strong fully biobased anisotropic cellulose aerogels. RSC Adv. 2016;6:96518.
  • Wu D, Fu R, Sun Z, et al. Low-density organic and carbon aerogels from the sol–gel polymerization of phenol with formaldehyde. J Non-Crystalline Solids. 2005;351:915.
  • Lee Y, Yoon JS, Suh DJ, et al. 5-hydroxymethylfurfural as a potential monomer for the preparation of carbon aerogel. Mater Chem Phys. 2012;136:837.
  • Henderson RK, Hill AP, Redman AM, et al. Development of GSK’s acid and base selection guides. Green Chem. 2015;17:945.
  • Nie J, Liu H. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on manganese oxide catalysts. J Catal. 2014;316:57.
  • Yadav GD, Sharma RV. Biomass derived chemicals: environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Appl Catal B Environ. 2014;147:293.
  • Antonyraj CA, Jeong J, Kim B, et al. Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production. J Ind Eng Chem. 2013;19(3):1056.
  • Ventura M, Lobefaro F, de Giglio E, et al. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran or 2-Formyl-5-furancarboxylic Acid in Water by using MgO⋅CeO2 Mixed Oxides as Catalysts. ChemSusChem. 2018;11(8):1305.
  • Ma J, Wang M, Du Z, et al. Synthesis and properties of furan-based imine-linked porous organic frameworks. Polym Chem. 2012;3:2346.
  • Xiang T, Liu X, Yi P, et al. Schiff base polymers derived from 2,5-diformylfuran. Polym Int. 2013;62:1517.
  • Amarasekara AS, Green D, Williams LD. Renewable resources based polymers: synthesis and characterization of 2,5-diformylfuran–urea resin. Eur Polym J. 2009;45:595.
  • Smirnova NV, Klushin VA, Bezbozhnaya TV, et al. Selective Oxidation of 5-(Hydroxymethyl)furfural to Furan-2,5-dicarbaldehyde with Sodium Nitrite in Phosphoric Acid. Russ J Org Chem. 2018;54:414.
  • Rathod PV, Nale SD, Jadhav VH. Metal Free Acid Base Catalyst in the Selective Synthesis of 2,5-Diformylfuran from Hydroxymethylfurfural, Fructose, and Glucose. ACS Sustain Chem Eng. 2017;5:701.
  • Saliger R, Bock V, Petricevic R, et al. Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J Non-Crystalline Solids. 1997;221:144.
  • Petričević R, Reichenauer G, Bock V, et al. Structure of carbon aerogels near the gelation limit of the resorcinol–formaldehyde precursor. J Non-Crystalline Solids. 1998;225:41.
  • Schaefer DW, Pekala R, Beaucage G. Origin of porosity in resorcinol-formaldehyde aerogels. J Non-Crystalline Solids. 1995;186:159.
  • Bruno MM, Cotella NG, Miras MC, et al. A novel way to maintain resorcinol–formaldehyde porosity during drying: stabilization of the sol–gel nanostructure using a cationic polyelectrolyte. Colloids Surf A Physicochem Eng Asp. 2010;362:28.
  • Chang Y-M, Wu C-Y, Wu P-W. Synthesis of large surface area carbon xerogels for electrochemical double layer capacitors. J Power Sources. 2013;223:147.
  • Patton A, ed. Formaldehyde: synthesis, applications, and potential health effects. New York: Nova Science Publishers Inc; 2015.