19,647
Views
62
CrossRef citations to date
0
Altmetric
Articles

Biopolymer composites: a review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 40-84 | Received 18 Sep 2020, Accepted 21 Jan 2021, Published online: 05 Feb 2021

References

  • Azammi AMN, Ilyas RA, Sapuan SM, et al. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In: Interfaces in particle and fibre reinforced composites. Woodhead Publishing; 2020. p. 29–93.
  • Getme AS, Patel B. A review: bio-fiber’s as reinforcement in composites of polylactic acid (PLA). Mater Today Proc. 2020.
  • Vinod A, Sanjay MR, Suchart S, et al. Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod. 2020;120978.
  • Hosseini SB. Natural fiber polymer nanocomposites. In: Fiber-reinforced nanocomposites: fundamentals and applications. Elsevier; 2020. p. 279–299.
  • Asim M, Saba N, Jawaid M, et al. Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. In: Sustainable composites for aerospace applications. Woodhead Publishing; 2018. p. 253–268.
  • Bari E, Morrell JJ, Sistani A. Durability of natural/synthetic/biomass fiber-based polymeric composites: laboratory and field tests. In: Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing; 2018. p. 15–26.
  • Jawaid M, Abdul Khalil HPS. Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym. 2011;86(1):1–18.
  • Mhatre AM, Raja ASM, Saxena S, et al. Environmentally benign and sustainable green composites: current developments and challenges. In: Green composites. Springer, Singapore. 2019. p. 53–90.
  • Ramamoorthy SK, Skrifvars M, Persson A. A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev. 2015;55(1):107–162.
  • Sadeghi S, Dadashian F, Eslahi N. Recycling chicken feathers to produce adsorbent porous keratin-based sponge. International Journal of Environmental Science and Technology. 2019;16(2):1119–1128.
  • Mohamed SAN, Zainudin ES, Sapuan SM, et al. Introduction to natural fiber reinforced vinyl ester and vinyl polymer composites. In: Natural fibre reinforced vinyl ester and vinyl polymer composites. Woodhead Publishing; 2018. p. 1–25.
  • Loureiro NC, Esteves JL. Green composites in automotive interior parts: a solution using cellulosic fibers. In: Green composites for automotive applications. Elsevier Ltd; 2018. p. 81–97.
  • Sanjay M, Yogesha B. Studies on natural/glass fiber reinforced polymer hybrid composites: an evolution. Mater Today Proc. 2017;4(2):2739–2747.
  • Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E, et al. Green composites prepared from aliphatic polyesters and bast fibers. Ind Crops Prod. 2015;68:60–79.
  • Faruk O, Bledzki AK, Fink HP, et al. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci. 2012;37(11):1552–1596.
  • Varghese AM, Mittal V. Polymer composites with functionalized natural fibers. In: Biodegradable and biocompatible polymer composites. 2018. p. 157–186.
  • Naveen J, Jawaid M, Amuthakkannan P, et al. Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. In: Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. 2018. p. 427–440.
  • Almeida JHS, Amico SC, Botelho EC, et al. Hybridization effect on the mechanical properties of curaua/glass fiber composites. Compos B Eng. 2013;55:492–497.
  • de Resende TM, da Costa MM. Biopolymers of sugarcane. In: Sugarcane biorefinery, technology and perspectives. Academic Press; 2020. p. 229–254.
  • Vijay R, Singaravelu DL, Vinod A, et al. Characterization of alkali-treated and untreated natural fibers from the stem of parthenium hysterophorus. J Nat Fibers. 2019;1–11.
  • Vijay R, Manoharan S, Vinod A, et al. Characterization of raw and benzoyl chloride treated impomea pes-caprae fibers and its epoxy composites. Mater Res Express. 2019;6(9):95307.
  • Vinod A, Vijay R, Singaravelu DL, et al. Characterization of untreated and alkali treated natural fibers extracted from the stem of Catharanthus roseus. Mater Res Express. 2019;6(8):85406.
  • Jebadurai SG, Raj RE, Sreenivasan VS, et al. Comprehensive characterization of natural cellulosic fiber from coccinia grandis stem. Carbohydr Polym. 2019;207:675–683.
  • Saravana Kumaar A, Senthilkumar A, Sornakumar T, et al. Physicochemical properties of new cellulosic fiber extracted from carica papaya bark. J Nat Fibers. 2019;16(2):175–184.
  • Vinod A, Vijay R, Singaravelu DL, et al. Extraction and characterization of natural fiber from stem of cardiospermum halicababum. J Nat Fibers. 2019;1–11.
  • Vijay R, Singaravelu DL, Vinod A, et al. Characterization of novel natural fiber from saccharum bengalense grass (sarkanda). J Nat Fibers. 2019;1–9.
  • Vijay R, Singaravelu DL, Vinod A, et al. Characterization of raw and alkali treated new natural cellulosic fibers from tridax procumbens. Int J Biol Macromol. 2019;125:99–108.
  • Subramanian SG, Rajkumar R, Ramkumar T. Characterization of natural cellulosic fiber from cereus hildmannianus. J Nat Fibers. 2019;1–12.
  • Manimaran P, Saravanan SP, Prithiviraj M. Investigation of physico chemical properties and characterization of new natural cellulosic fibers from the bark of ficus racemosa. J Nat Fibers. 2019;1–11.
  • Manimaran P, Saravanan SP, Sanjay MR, et al. Characterization of new cellulosic fiber: dracaena reflexa as a reinforcement for polymer composite structures. J Mater Res Technol. 2019;8(2):1952–1963.
  • Aznar-Cervantes SD, Pagan A, Monteagudo Santesteban B, et al. Effect of different cocoon stifling methods on the properties of silk fibroin biomaterials. Sci Rep. 2019;9(1):1–11.
  • Paridah MT, Basher AB, SaifulAzry SOA, et al. Retting process of some bast plant fibres and its effect on fibre quality: a review. BioResources. 2011;6(4):5260–5281.
  • Aisyah GS, Tajuddin RM. Trends in natural fibre production and its future. 2014. p. 1–26.
  • Omar MF, Jaya H, Zulkepli NN. Kenaf fiber reinforced composite in the automotive industry. In: Encyclopedia of renewable and sustainable materials. 2019. p. 95–101.
  • Kabir MM, Wang H, Lau KT, et al. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B Eng. 2012;43(7):2883–2892.
  • Ilyas RA, Sapuan SM, Ibrahim R, et al. Sugar palm (arenga pinnata (wurmb.) merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scale. J Mater Res Technol. 2019;8(3):2753–2766.
  • Arthanarieswaran VP, Kumaravel A, Saravanakumar SS. Physico-chemical properties of alkali-treated acacia leucophloea fibers. Int J Polym Anal Charact. 2015;20(8):704–713.
  • Christian SJ. Natural fibre-reinforced noncementitious composites (biocomposites). In: Nonconventional and vernacular construction materials. Woodhead Publishing; 2016. p. 111–126.
  • Chatha SAS, Asgher M, Asgher R, et al. Environmentally responsive and anti-bugs textile finishes – recent trends, challenges, and future perspectives. Sci Total Environ. 2019;690:667–682.
  • Siakeng R, Jawaid M, Ariffin H, et al. Natural fiber reinforced polylactic acid composites: a review. Polym Compos. 2019;40(2):446–463.
  • Coelho de Carvalho Benini KC, Voorwald HJC, Cioffi MOH, et al. Characterization of a new lignocellulosic fiber from Brazil: imperata brasiliensis (Brazilian satintail) as an alternative source for nanocellulose extraction. J Nat Fibers. 2017;14(1):112–125.
  • Faruk O, Ain MS. Biofiber reinforced polymer composites for structural applications. In: Developments in fiber-reinforced polymer (FRP) composites for civil engineering. Woodhead Publishing; 2013. p. 18–53.
  • Bhagabati P. Biopolymers and biocomposites-mediated sustainable high-performance materials for automobile applications. In: Sustainable nanocellulose and nanohydrogels from natural sources. Elsevier; 2020. p. 197–216.
  • Satyanarayana KG, Arizaga GGC, Wypych F. Biodegradable composites based on lignocellulosic fibers-an overview. Prog Polym Sci. 2009;34(9):982–1021.
  • Fazeli M, Florez JP, Simão RA. Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification. Compos B Eng. 2019;163:207–216.
  • Ajeesh G, Sanjana P, Sivani MR, et al. Development of fire resistant polymeric nano composites using plasma modified calcium silicate. In: Advanced manufacturing and materials science. Springer, Cham; 2018. p. 449–456.
  • Adekunle KF. Surface treatments of natural fibres-a review: part 1. Open J Polym Chem. 2015;05(3):41–46.
  • Hassani FO, Merbahi N, Oushabi A, et al. Effects of corona discharge treatment on surface and mechanical properties of aloe vera fibers. Mater Today Proc. 2020;24:46–51.
  • Sanjay MR, Siengchin S, Parameswaranpillai J, et al. A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr Polym. 2019;207:108–121.
  • Burrola-Núñez H, Herrera-Franco PJ, Rodríguez-Félix DE, et al. Surface modification and performance of jute fibers as reinforcement on polymer matrix: an overview. J Nat Fibers. 2018;16(7):944–960.
  • Lemeune S, Jameel H, Chang HM, et al. Effects of ozone and chlorine dioxide on the chemical properties of cellulose fibers. J Appl Polym Sci. 2004;93(3):1219–1223.
  • Mwaikambo LY, Ansell MP. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci. 2002;84(12):2222–2234.
  • Basu G, Mishra L, Samanta AK. Appropriate bleaching technique for coconut fiber. J Nat Fibers. 2019;16(3):442–452.
  • Fonseca AS, Panthapulakkal S, Konar SK, et al. Improving cellulose nanofibrillation of non-wood fiber using alkaline and bleaching pre-treatments. Ind Crops Prod. 2019;131:203–212.
  • Carvalho KCC, Mulinari DR, Voorwald HJC, et al. Chemical modification effect on the mechanical properties of hips/coconut fiber composites. BioResources. 2010;5(2):1143–1155.
  • Reddy KO, Maheswari CU, Shukla M, et al. Tensile and structural characterization of alkali treated borassus fruit fine fibers. Compos B Eng. 2013;44(1):433–438.
  • Mina MF, Gafur MA, Ahmed AN, et al. Effect of chemical modifications on surface morphological, structural, mechanical, and thermal properties of sponge-gourd natural fiber. Fibers Polym. 2018;19(1):31–40.
  • Madhu P, Sanjay MR, Pradeep S, et al. Characterization of cellulosic fibre from phoenix pusilla leaves as potential reinforcement for polymeric composites. J Mater Res Technol. 2019;8(3):2597–2604.
  • Labidi K, Cao Z, Zrida M, et al. Alfa fiber/polypropylene composites: influence of fiber extraction method and chemical treatments. J Appl Polym Sci. 2019;136(18):47392.
  • Liu Y, Xie J, Wu N, et al. Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforced polymer composites. Tribol Int. 2019;131:398–405.
  • Kakati N, Assanvo EF, Kalita D. Alkalinization and graft copolymerization of pineapple leaf fiber cellulose and evaluation of physic-chemical properties. Polym Compos. 2019;40(4):1395–1403.
  • George A, Sanjay MR, Srisuk R, et al. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol. 2020;154:329–338.
  • Calori IR, Braga G, de Jesus da CC P, et al. Polymer scaffolds as drug delivery systems. Eur Polym J. 2020;129:109621.
  • Bharathi SKV, Murugesan P, Moses JA, et al. Recent trends in nanocomposite packaging materials. 2020.
  • De Azeredo HMC. Nanocomposites for food packaging applications. Food Res Int. 2009;42(9):1240–1253.
  • Arrieta MP, Peponi L, López D, et al. An overview of nanoparticles role in the improvement of barrier properties of bioplastics for food packaging applications. In: Food packaging. Academic Press; 2017. p. 391–424.
  • Bin PS, Lih E, Park KS, et al. Biopolymer-based functional composites for medical applications. Prog Polym Sci. 2017;68:77–105.
  • Peelman N, Ragaert P, De Meulenaer B, et al. Application of bioplastics for food packaging. Trends Food Sci Technol. 2013;32(2):128–141.
  • Nevoralová M, Koutný M, Ujčić A, et al. Controlled biodegradability of functionalized thermoplastic starch based materials. Polym Degrad Stab. 2019;170:108995.
  • Shankar S, Rhim JW. Bionanocomposite films for food packaging applications. In: Reference module in food science. 2018. p. 1–10.
  • Wankhade V. Animal-derived biopolymers in food and biomedical technology. In: Biopolymer-based formulations. Elsevier; 2020. p. 139–152.
  • Kim NK, Bruna FG, Das O, et al. Fire-retardancy and mechanical performance of protein-based natural fibre-biopolymer composites. Compos Part C Open Access. 2020;100011.
  • Wu Q, Rabu J, Goulin K, et al. Flexible strength-improved and crack-resistant biocomposites based on plasticised wheat gluten reinforced with a flax-fibre-weave. Compos Part A Appl Sci Manuf. 2017;94:61–69.
  • Sarasini F. Thermoplastic biopolymer matrices for biocomposites. In: Biocomposites for high-performance applications. Woodhead Publishing; 2017. p. 81–123.
  • Lackner M, Kamravamanesh D, Krampl M, et al. Characterization of photosynthetically synthesized poly(3-hydroxybutyrate) using a randomly mutated strain of synechocystis sp. PCC 6714. Int J Biobased Plast. 2019;1(1):48–59.
  • Kamravamanesh D, Kiesenhofer D, Fluch S, et al. Scale-up challenges and requirement of technology-transfer for cyanobacterial poly (3-hydroxybutyrate) production in industrial scale. Int J Biobased Plast. 2019;1(1):60–71.
  • Lackner M. Bioplastics. In: Kirk-othmer encyclopedia of chemical technology. 2000. p. 1–41.
  • Faruk O, Bledzki AK. Processing of biofiber-reinforced composites. Wiley Encycl Compos. 2012;1–15.
  • Xu H, Wang L, Teng C, et al. Biodegradable composites: ramie fibre reinforced PLLA-PCL composite prepared by in situ polymerization process. Polym Bull. 2008;61(5):663–670.
  • Cheung HY, Lau KT, Tao XM, et al. A potential material for tissue engineering: silkworm silk/PLA biocomposite. Compos B Eng. 2008;39(6):1026–1033.
  • Cheng S, Lau Tak K, Liu T, et al. Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos B Eng. 2009;40(7):650–654.
  • Xia W, Song J, Tarverdi K, et al. Wheat straw and wheat flour biocomposites prepared by extrusion process. J Biobased Mater Bioenergy. 2010;4(2):172–180.
  • Liang Z, Pan P, Zhu B, et al. Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci. 2010;115(6):3559–3567.
  • Su SK, Wu CS. The processing and characterization of polyester/natural fiber composites. Polym Plast Technol Eng. 2010;49(10):1022–1029.
  • Kim JT, Netravali AN. Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Compos Part A Appl Sci Manuf. 2010;41(9):1245–1252.
  • Yu T, Ren J, Li S, et al. Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A Appl Sci Manuf. 2010;41(4):499–505.
  • Thirmizir MZA, Ishak ZAM, Taib RM, et al. Mechanical, water absorption and dimensional stability studies of kenaf bast fibre-filled poly(butylene succinate) composites. Polym Plast Technol Eng. 2011;50(4):339–348.
  • Graupner N, Müssig J. A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites. Compos Part A Appl Sci Manuf. 2011;42(12):2010–2019.
  • Pickering KL, Sawpan MA, Jayaraman J, et al. Influence of loading rate, alkali fibre treatment and crystallinity on fracture toughness of random short hemp fibre reinforced polylactide bio-composites. Compos Part A Appl Sci Manuf. 2011;42(9):1148–1156.
  • Qin L, Qiu J, Liu M, et al. Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem Eng J. 2011;166(2):772–778.
  • Nam TH, Ogihara S, Tung NH, et al. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos B Eng. 2011;42(6):1648–1656.
  • Hossain MK, Dewan MW, Hosur M, et al. Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites. Compos B Eng. 2011;42(6):1701–1707.
  • Song YS, Lee JT, Ji DS, et al. Viscoelastic and thermal behavior of woven hemp fiber reinforced poly(lactic acid) composites. Compos B Eng. 2012;43(3):856–860.
  • Castaño J, Rodríguez-Llamazares S, Carrasco C, et al. Physical, chemical and mechanical properties of pehuen cellulosic husk and its pehuen-starch based composites. Carbohydr Polym. 2012;90(4):1550–1556.
  • Goriparthi BK, Suman KNS, Rao NM. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos Part A Appl Sci Manuf. 2012;43(10):1800–1808.
  • Wróbel-Kwiatkowska M, Czemplik M, Kulma A, et al. New biocomposites based on bioplastic flax fibers and biodegradable polymers. Biotechnol Prog. 2012;28(5):1336–1346.
  • Yang Y, Murakami M, Hamada H. Molding method, thermal and mechanical properties of jute/PLA injection molding. J Polym Environ. 2012;20(4):1124–1133.
  • Goriparthi BK, Suman KNS, Nalluri MR. Processing and characterization of jute fiber reinforced hybrid biocomposites based on polylactide/polycaprolactone blends. Polym Compos. 2012;33(2):237–244.
  • Huda MS, Schmidt WF, Misra M, et al. Effect of fiber surface treatment of poultry feather fibers on the properties of their polymer matrix composites. J Appl Polym Sci. 2013;128(2):1117–1124.
  • Russo P, Carfagna C, Cimino F, et al. Biodegradable composites reinforced with kenaf fibers: thermal, mechanical, and morphological issues. Advances in Polymer Technology. 2013;32(S1):E313–22.
  • Vilela C, Sousa AF, Freire CSR, et al. Novel sustainable composites prepared from cork residues and biopolymers. Biomass Bioenergy. 2013;55:148–155.
  • Song Y, Liu J, Chen S, et al. Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method. J Polym Environ. 2013;21(4):1117–1127.
  • Mamun AA, Heim HP, Beg DH, et al. PLA and PP composites with enzyme modified oil palm fibre: a comparative study. Compos Part A Appl Sci Manuf. 2013;53:160–167.
  • de Araujo MAM, de Sena Neto AR, Hage JE, et al. Curaua leaf fiber (ananas comosus var. erectifolius) reinforcing poly(lactic acid) biocomposites: formulation and performance. Polym Compos. 2015;36(8):1520–1530.
  • Siengchin S. Reinforced flax mat/modified polylactide (PLA) composites: impact, thermal, and mechanical properties. Mech Compos Mater. 2014;50(2):257–266.
  • Lu T, Liu S, Jiang M, et al. Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites. Compos B Eng. 2014;62:191–197.
  • Eng CC, Ibrahim NA, Zainuddin N, et al. Impact strength and flexural propertiaes enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites. Sci World J. 2014;2014.
  • Baba BO, Özmen U. Preparation and mechanical characterization of chicken feather/PLA composites. Polym Compos. 2017;38(5):837–845.
  • Sandrine UB, Isabelle V, Hoang MT, et al. Influence of chemical modification on hemp-starch concrete. Constr Build Mater. 2015;81:208–215.
  • Xia X, Liu W, Zhou L, et al. Modification of flax fiber surface and its compatibilization in polylactic acid/flax composites. Iran Polym J. 2016;25(1):25–35.
  • Miroiu FM, Stefan N, Visan AI, et al. Composite biodegradable biopolymer coatings of silk fibroin - poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications. Appl Surf Sci. 2015;355:1123–1131.
  • Thakur K, Kalia S, Kaith BS, et al. The development of antibacterial and hydrophobic functionalities in natural fibers for fiber-reinforced composite materials. J Environ Chem Eng. 2016;4(2):1743–1752.
  • Orue A, Jauregi A, Unsuain U, et al. The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites. Compos Part A Appl Sci Manuf. 2016;84:186–195.
  • Foruzanmehr M, Vuillaume PY, Elkoun S, et al. Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers. Mater Des. 2016;106:295–304.
  • Anantha RK, Kota S. Removal of lead by adsorption with the renewable biopolymer composite of feather (dromaius novaehollandiae) and chitosan (agaricus bisporus). Environ Technol Innov. 2016;6:11–26.
  • Jumaidin R, Sapuan SM, Jawaid M, et al. Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm starch/agar hybrid composites. Int J Biol Macromol. 2017;97:606–615.
  • Zhu Z, Wu H, Ye C, et al. Enhancement on mechanical and thermal propertiaces of PLA biocomposites due to the addition of hybrid sisal fibers. J Nat Fibers. 2017;14(6):875–886.
  • Lenz DM, Tedesco DM, Camani PH, et al. Multiple reprocessing cycles of corn starch-based biocomposites reinforced with curauá fiber. J Polym Environ. 2018;26(7):3005–3016.
  • Sheik S, Nagaraja GK, Chandrashekar KR. Thermal, morphological and antibacterial properties of chitosan grafted silk fibre reinforced pva films. Mater Today Proc. 2018;5(10):21011–21017.
  • Sheik S, Sheik S, Nairy R, et al. Study on the morphological and biocompatible properties of chitosan grafted silk fibre reinforced PVA films for tissue engineering applications. Int J Biol Macromol. 2018;116:45–53.
  • Abral H, Dalimunthe MH, Hartono J, et al. Research article characterization of tapioca starch biopolymer composites reinforced with micro scale water hyacinth fibers. Starch‐Stärke. 2018;70(7–8):1700287.
  • Jaafar J, Siregar JP, Piah MBM, et al. Influence of selected treatment on tensile properties of short pineapple leaf fiber reinforced tapioca resin biopolymer composites. J Polym Environ. 2018;26(11):4271–4281.
  • Karaky H, Maalouf C, Bliard C, et al. Characterization of beet-pulp fiber reinforced potato starch biopolymer composites for building applications. Constr Build Mater. 2019;203:711–721.
  • González-López ME, Pérez-Fonseca AA, Cisneros-López EO, et al. Effect of maleated pla on the properties of rotomolded PLA-agave fiber biocomposites. J Polym Environ. 2019;27(1):61–73.
  • Kremensas A, Kairyte A, Vaitkus S, et al. Mechanical performance of biodegradable thermoplastic polymer-based biocomposite boards from hemp shivs and corn starch for the building industry. Materials. 2019;16(6):845.
  • Motru S, Adithyakrishna VH, Bharath J, et al. Development and evaluation of mechanical properties of biodegradable PLA/flax fiber green composite laminates. Mater Today Proc. 2020;24:641–649.
  • Saxena A, Elder TJ, Ragauskas AJ. Moisture barrier properties of xylan composite films. Carbohydr Polym. 2011;84(4):1371–1377.
  • Ramamoorthy SK, Åkesson D, Rajan R, et al. Mechanical performance of biofibers and their corresponding composites. In: Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing; 2018. p. 259–292.
  • Netravali AN, Chabba S. Composites get greener. Mater Today. 2003;6(4):22–29.
  • Macedo JDS, Costa MF, Tavares MIB, et al. Preparation and characterization of composites based on polyhydroxybutyrate and waste powder from coconut fibers processing. Polym Eng Sci. 2010;50(7):1466–1475.
  • Petinakis E, Yu L, Edward G, et al. Effect of matrix-particle interfacial adhesion on the mechanical properties of poly(lactic acid)/wood-flour micro-composites. J Polym Environ. 2009;17(2):83–94.
  • Sawpan MA, Pickering KL, Fernyhough A. Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos Part A Appl Sci Manuf. 2012;43(3):519–526.
  • Ibrahim NA, Ahmad SNA, Yunus WMZW, et al. Effect of electron beam irradiation and poly(vinyl pyrrolidone) addition on mechanical properties of polycaprolactone with empty fruit bunch fibre (OPEFB) composite. Express Polym Lett. 2009;3(4):226–234.
  • Huda MS, Drzal LT, Ray D, et al. Natural-fiber composites in the automotive sector. In: Properties and performance of natural-fibre composites. Woodhead Publishing; 2008. p. 221–268.
  • Oksman K, Skrifvars M, Selin JF. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol. 2003;63(9):1317–1324.
  • Taib RM, Ramarad S, Ishak ZAM, et al. Properties of kenaf fiber/polylactic acid biocomposites plasticized with polyethylene glycol. Polym Compos. 2010;31(7):1213–1222.
  • Du Y, Yan N, Kortschot MT. An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels. Compos Struct. 2013;106:160–166.
  • Kaiser MR, Anuar H, Razak S. Ductile–brittle transition temperature of polylactic acid-based biocomposite. J Thermoplast Compos Mater. 2013;26(2):216–226.
  • Mohan TP, Kanny K. Tribological properties of nanoclay-infused banana fiber reinforced epoxy composites. J Tribol. 2019;141(5):052003.
  • Abidin NIZ, Sabri MFM, Kalantari K, et al. Corrosion detection for natural/synthetic/textiles fiber polymer composites. In: Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites. 2018. p. 93–112.
  • Bharath KN, Basavarajappa S. Applications of biocomposite materials based on natural fibers from renewable resources: a review. Sci Eng Compos Mater. 2016;23(2):123–133.
  • Mohammed L, Ansari MNM, Pua G, et al. A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci. 2015.
  • Pozo Morales A, Güemes A, Fernandez-Lopez A, et al. Bamboo-polylactic acid (PLA) composite material for structural applications. Materials. 2017;10(11):1286.
  • Sis ALM, Ibrahim NA, Yunus WMZW. Effect of (3-aminopropyl)trimethoxysilane on mechanical properties of PLA/PBAT blend reinforced kenaf fiber. Iran Polym J. 2013;22(2):101–108.
  • Dorez G, Taguet A, Ferry L, et al. Thermal and fire behavior of natural fibers/PBS biocomposites. Polym Degrad Stab. 2013;98(1):87–95.
  • Tekade RK, Maheshwari R, Tekade M. Biopolymer-based nanocomposites for transdermal drug delivery. In: Biopolymer-based composites: drug delivery and biomedical applications. Woodhead Publishing; 2017. p. 81–106.
  • Huang H, Dean D. 3-D printed porous cellulose acetate tissue scaffolds for additive manufacturing. Addit Manuf. 2020;31:100927.
  • Azwa ZN, Yousif BF, Manalo AC, et al. A review on the degradability of polymeric composites based on natural fibres. Mater Des. 2013;47:424–442.
  • Christian SJ, Billington SL. Moisture diffusion and its impact on uniaxial tensile response of biobased composites. Compos B Eng. 2012;43(5):2303–2312.
  • Alvarez VA, Vázquez A. Effect of water sorption on the flexural properties of a fully biodegradable composite. J Compos Mater. 2004;38(13):1165–1182.
  • Alvarez VA, Fraga AN, Vázquez A. Effects of the moisture and fiber content on the mechanical properties of biodegradable polymer-sisal fiber biocomposites. J Appl Polym Sci. 2004;91(6):4007–4016.
  • Muthuraj R, Lacoste C, Lacroix P, et al. Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: elaboration and performances evaluation. Ind Crops Prod. 2019;135:238–245.
  • Muthuraj R, Misra M, Mohanty AK. Reactive compatibilization and performance evaluation of miscanthus biofiber reinforced poly(hydroxybutyrate-co-hydroxyvalerate) biocomposites. J Appl Polym Sci. 2017;134(21):1–10.
  • Muthuraj R, Misra M, Mohanty AK. Biodegradable biocomposites from poly(butylene adipate-co-terephthalate) and miscanthus: preparation, compatibilization, and performance evaluation. J Appl Polym Sci. 2017;134(43):45448.
  • Mngomezulu ME, John MJ, Jacobs V, et al. Review on flammability of biofibres and biocomposites. Carbohydr Polym. 2014;111:149–182.
  • Jang JY, Jeong TK, Oh HJ, et al. Thermal stability and flammability of coconut fiber reinforced poly(lactic acid) composites. Compos B Eng. 2012;43(5):2434–2438.
  • Rabe S, Sanchez-Olivares G, Pérez-Chávez R, et al. Natural keratin and coconut fibres from industrial wastes in flame retarded thermoplastic starch biocomposites. Materials. 2019;12(3):344.
  • Chapple S, Anandjiwala R. Flammability of natural fiber-reinforced composites and strategies for fire retardancy: a review. J Thermoplast Compos Mater. 2010;23(6):871–893.
  • Gallo E, Schartel B, Acierno D, et al. Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate. Compos B Eng. 2013;44(1):112–119.
  • Anandjiwala R, Chapple SA, John MJ, et al. Flame-proofed artefact and a method of manufacture thereof. United States patent US 9,796,167; 2017.
  • Das O, Rasheed F, Kim NK, et al. The development of fire and microbe resistant sustainable gluten plastics. J Clean Prod. 2019;222:163–173.
  • Zainuddin S, Hasan SMK, Loeven D, et al. Mechanical, fire retardant, water absorption and soil biodegradation properties of poly(3-hydroxy-butyrate-co-3-valerate) nanofilms. J Polym Environ. 2019;27(10):2292–2304.
  • Campos A, Marconcini JM, Martins-Franchetti SM, et al. The influence of UV-C irradiation on the properties of thermoplastic starch and polycaprolactone biocomposite with sisal bleached fibers. Polym Degrad Stab. 2012;97(10):1948–1955.
  • Morse MC. Anaerobic biodegradation of biocomposites for the building industry. CA: Stanford University; 2009. Available from https://civilnode.com/download-thesis/10818248261496/anaerobic-biodegradation-of-biocomposites-for-the-building-industry
  • Lee SH, Wang S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A Appl Sci Manuf. 2006;37(1):80–91.
  • Alvarez VA, Ruseckaite RA, Va A. Degradation of sisal fibre/Mater Bi-Y biocomposites buried in soil. Polym Degrad Stab. 2006;91(12):3156–3162.
  • Barkoula NM, Garkhail SK, Peijs T. Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate. Ind Crops Prod. 2010;31(1):34–42.
  • Dehghan M, Faezipour MM, Azizi M, et al. Assesement of the biodegradability of composites produced from poly-lactic acid and bamboo flour. 2019. p. 537–548.
  • Murariu M, Dubois P. PLA composites: from production to properties. Adv Drug Deliv Rev. 2016;107:17–46.
  • Bax B, Müssig J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol. 2008;68(7–8):1601–1607.
  • Bhatnagar A, Sain M. Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos. 2005;24(12):1259–1268.
  • Asaithambi B, Ganesan G, Kumar SA. Bio-composites : development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites. Fibers Polym. 2014;15(4):847–854.
  • Graupner N, Herrmann AS, Müssig J. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos Part A Appl Sci Manuf. 2009;40(6–7):810–821.
  • Ngaowthong C, Borůvka M, Běhálek L, et al. Recycling of sisal fiber reinforced polypropylene and polylactic acid composites: thermo-mechanical properties, morphology, and water absorption behavior. Waste Manag. 2019;97:71–81.
  • Dittenber DB, Gangarao HVS. Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf. 2012;43(8):1419–1429.