3,895
Views
6
CrossRef citations to date
0
Altmetric
Articles

Synthesis of poly-3-hydroxybutyrate (PHB) by Bacillus cereus using grape residues as sole carbon source

ORCID Icon, , , , &
Pages 98-111 | Received 26 Nov 2020, Accepted 21 Jan 2021, Published online: 09 Feb 2021

References

  • Yoshida H, Gable JJ, Park JK. Evaluation of organic waste diversion alternatives for greenhouse gas reduction. Resour. Conserv. Recycl. 2012;60:1–9.
  • Banerjee J, Singh R, Vijayaraghavan R, MacFarlane D, Patti AF, Arora A. Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chem. 2017;225:10–22.
  • Achinas S, Achinas V, Euverink GJW, et al. Overview of biogas production from biowaste. Engineering. 2017;3(3):299–307.
  • Pavi S, Kramer LE, Gomes LP, et al. Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresour Technol. 2017;228:362–367.
  • Sitorus B, Sukandar, Panjaitan SD. Biogas recovery from anaerobic digestion process of mixed fruit -vegetable wastes. Energy Procedia. 2013;32:176–182.
  • Sharma K, Mahato N, Cho MH, et al. Converting citrus wastes into value-added products: economic and environmently friendly approaches. Nutrition. 2017;34:29–46.
  • Sagar NA, Pareek S, Sharma S, et al. Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf. 2018. DOI:https://doi.org/10.1111/1541-4337.12330
  • Sarkar N, Ghosh SK, Bannerjee S, et al. Bioethanol production from agricultural wastes: an overview. Renewable Energy. 2012;37(1):19–27.
  • Choi IS, Lee YG, Khanal SK, et al. A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Appl Energy. 2015;157:953–973.
  • Guerrero AB, Ballesteros I, Ballesteros M. The potential of agricultural banana waste for bioethanol production. Fuel. 2018;213:176–185.
  • Dietrich K, Dumont MJ, Del Rio LF, et al. Sustainable PHA production in integrated lignocellulose biorefineries. N Biotechnol. 2019;49:161–168.
  • Valappil SP, Peiris D, Langley GJ, Herniman JM, Boccaccini AR, Bucke C, Roy I. Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus spp. J. Biotechnol. 2007;127(3):475–487.
  • ŁAbuzek S, Radecka I. Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. J. Appl. Microbiol. 2001;90(3):353–357.
  • Valappil SP, Misra SK, Boccaccini AR, Keshavarz T, Bucke C, Roy I. Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. J Dairy Sci. 2013;132:251–258.
  • Lee B, Pometto AL, Fratzke A, Bailey TB. Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species. Appl. Environ. Microbiol. 1991;57:678–685.
  • Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000. DOI:https://doi.org/10.1016/S0079-6700(00)00035-6
  • Zhang J, Shishatskaya EI, Volova TG, et al. Polyhydroxyalkanoates (PHA) for therapeutic applications. Mater Sci Eng C. 2018. DOI:https://doi.org/10.1016/j.msec.2017.12.035
  • Wang Y, Yin J, Chen GQ. Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol. 2014;30:59–65.
  • Chen GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev. 2009. DOI:https://doi.org/10.1039/b812677c
  • Raza ZA, Abid S, Banat IM. Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegrad. 2018;126:45–56.
  • Brigham, Sinskey. Applications of Polyhydroxyalkanoates in the Medical Industry. Int J Biotechnol Wellness Ind. 2012. DOI:https://doi.org/10.6000/1927-3037.2012.01.01.03
  • Siracusa V, Rocculi P, Romani S, et al. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol. 2008;19(12):634–643.
  • Bioplastic E. Bioplastics market data 2019. Global production capacities of bioplastic 2019-2024. Eur Bioplastic. 2019.
  • Choi J, Lee SY. Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol. 1999;51(1):13–21.
  • Reis MAM, Serafim LS, Lemos PC, Ramos AM, Aguiar FR, Van Loosdrecht MCM. Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess Biosyst. Eng. 2003;25(6):377–385. .
  • Strong PJ, Laycock B, Mahamud SN, Jensen PD, Lant PA, Tyson G, Pratt S. The opportunity for high-performance biomaterials from methane. Microorganisms. 2016;4(1):11.
  • Koller M, Maršálek L, de Sousa Dias MM, et al. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol. 2017;37:24–38.
  • Brodin M, Vallejos M, Opedal MT, et al. Lignocellulosics as sustainable resources for production of bioplastics – a review. J Clean Prod. 2017;162:646–664.
  • Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci. 2008;9(9):1621–1651.
  • Obruca S, Benesova P, Marsalek L, et al. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q. 2015;29(2):135–144.
  • Ayeni AO, Adeeyo OA, Oresegun OM, et al. Compositional analysis of lignocellulosic materials: evaluation of an economically viable method suitable for woody and non-woody biomass. Am J. Eng Res. 2015.
  • Ramadas NV, Singh SK, Soccol CR, et al. Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149. Brazilian Arch. Biol. Technol. 2009;52(1):17–23.
  • Naranjo JM, Cardona CA, Higuita JC. Use of residual banana for polyhydroxybutyrate (PHB) production: case of study in an integrated biorefinery. Waste Manag. 2014;34(12):2634–2640.
  • Zhang Y, Sun W, Wang H, et al. Polyhydroxybutyrate production from oil palm empty fruit bunch using bacillus megaterium R11. Bioresour Technol. 2013;147:307–314.
  • Getachew A, Woldesenbet F. Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res Notes. 2016;9(1):1–9.
  • Gowda V, Agrowaste-based Polyhydroxyalkanoate SS. (PHA) production using hydrolytic potential of Bacillus thuringiensis IAM 12077. Brazilian Arch. Biol. Technol. 2014;57(1):55–61.
  • Rao A, Haque S, El-Enshasy HA, et al. RSM–GA based optimization of bacterial PHA production and In Silico modulation of citrate synthase for enhancing PHA production. Biomolecules. 2019;9(12):872.
  • Sukan A, Roy I, Agro-Industrial Waste KT. Materials as substrates for the production of Poly(3-Hydroxybutyric acid). J. Biomater. Nanobiotechnol. 2014;5(4):229–240.
  • Suwannasing W, Imai T, Kaewkannetra P. Cost-effective defined medium for the production of polyhydroxyalkanoates using agricultural raw materials. Bioresour Technol. 2015;194:67–74.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959;31(3):426–428.
  • Weatherburn MW. Phenol-Hypochlorite Reaction for Determination of Ammonia. Anal. Chem. 1967;39(8):971–974.
  • García A, Pérez D, Castro M, et al. Production and recovery of poly-3-hydroxybutyrate [P(3HB)] of ultra-high molecular weight using fed-batch cultures of Azotobacter vinelandii OPNA strain. J. Chem. Technol. Biotechnol. 2019;94(6):1853–1860.
  • Khiyami MA, Al-fadual SM, Bahklia AH. Polyhydroxyalkanoates production via Bacillus (PCS) biofilm and date palm syrup. J Med Plants Res. 2011.
  • Kumar P, Ray S, Patel SKS, et al. Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int. J. Biol. Macromol. 2015;78:9–16.
  • Sharma P, Bajaj BK. Cost-effective substrates for production of poly-β-hydroxybutyrate by a newly isolated Bacillus cereus PS-10. J. Environ. Biol. 2015;36(6):1297–1304.
  • Bhattacharya S, Dubey S, Singh P, et al. Biodegradable polymeric substances produced by a marine bacterium from a surplus stream of the biodiesel industry. Bioengineering. 2016;3(4):34.
  • Mohammed S, Behera HT, Dekebo A, et al. Optimization of the culture conditions for production of Polyhydroxyalkanoate and its characterization from a new Bacillus cereus sp. BNPI-92 strain, isolated from plastic waste dumping yard. Int J Biol Macromol. 2020;156:1064–1080.
  • Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM. Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 2010;156(2):395–403. .
  • Xiang Q, Lee YY, Torget RW. Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol. 2004;115(1–3):1127–1138.
  • Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Mangwandi C, Walker GM. Kinetic modelling of dilute acid hydrolysis of lignocellulosic biomass. Biofuel Production-Recent Dev Prospect. 2011. DOI:https://doi.org/10.5772/17129
  • Yoon SY, Han SH, Shin SJ. The effect of hemicelluloses and lignin on acid hydrolysis of cellulose. Energy. 2014;77:19–24.
  • Lavarack BP, Griffin GJ, Rodman D. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy. 2002;23(5):367–380.
  • Świątek K, Gaag S, Klier A, Kruse A, Sauer J, Steinbach D. Acid hydrolysis of lignocellulosic biomass: sugars and furfurals formation. Catalysts. 2020;10(4):437.
  • Sousa EC, Uchôa-Thomaz AM, Carioca JO, Morais SM, Lima AD, Martins CG, Alexandrino CD, Ferreira PA, Rodrigues AL, Rodrigues SP, Silva JD, Rodrigues LL. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014;34(1):135–142.
  • Varandas S, Teixeira MJ, Marques JC, Marques JC, Aguiar A, Alves A, Bastos MM. Glucose and fructose levels on grape skin: interference in Lobesia botrana behaviour. Anal Chim Acta. 2004;513(1):351–355.
  • Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb. Biotechnol. 2008;1(6):497–506.
  • Mohapatra S, Maity S, Dash HR, Das S, Pattnaik S, Rath CC, Samantaray Det al. Bacillus and biopolymer: prospects and challenges. Biochem Biophys Rep. 2017;12:206–213.
  • Tsang TK, Roberson RW, Vermaas WFJ. Polyhydroxybutyrate particles in Synechocystis sp. PCC 6803: facts and fiction. Photosynth Res. 2013;118(1–2):37–49.
  • Bhagowati P, Pradhan S, Dash HR, et al. Production, optimization and characterization of polyhydroxybutyrate, a biodegradable plastic by Bacillus spp. Biosci. Biotechnol. Biochem. 2015;79(9):1454–1463.
  • Valappil SP, Misra SK, Boccaccini AR, Keshavarz T, Bucke C, Roy I. Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. J. Biotechnol. 2007;132(3):251–258.