3,098
Views
3
CrossRef citations to date
0
Altmetric
Articles

Screening, optimization and characterization of poly hydroxy butyrate from fresh water microalgal isolates

, &
Pages 139-162 | Received 09 Mar 2021, Accepted 02 May 2021, Published online: 09 Aug 2021

References

  • Halaj M, Maria M, Martina S, et al. Chemico-physical and pharmacodynamic properties of extracellular Dictyosphaerium chlorelloides biopolymer. Carbohydr Polym. 2018;198:215–224.
  • Liu A, Chen W, Zheng L, et al. Identification of high-lipid producers for biodiesel production from forty-three green algal isolates in China progress in natural science. Mater Int. 2011;21:269−276.
  • Muhammad R, Ghulam M, Sheraz AM, et al. Exploring the potential of microalgae for new biotechnology applications and beyond, a review. Renewable Sustainable Energy. 2018;92:394–404.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
  • Hempel F, Bozarth AS, Lindenkamp N, et al. Microalgae as bioreactors for bioplastic production. Microb Cell Factories. 2011;10(1):81.
  • Rahman A, Miller CD. Microalgae as a source of bioplastics. Edited by, Rastogi RP, Madamwar D, Pandey A, et al. editors Algal green chemistry, recent progress in biotechnology. Amsterdam. The Netherlands: Elsevier; 2017. 121–138.
  • Mohan SV, Hemalatha M, Chakraborty D, et al. Algal biorefinery models with self-sustainable closed loop approach: trends and prospective for blue-bioeconomy. Bioresour Technol. 2019;295:122–128.
  • Moreno GL, Adjalle K, Barnabe S, et al. Microalgae biomass production for a biorefinery system recent advances and the way towards sustainability. Renewable Sustainable Energy Rev. 2017;76:493–506.
  • Sasikala S, Santhosh S, Hemalatha V, et al. A new method for the production of polyhydroxyalkanoates by Bacillus sp. and detect the presence of PHA. synthase. Smart Sci. 2018; 6:2, 105-116.
  • Mishra A, Kavita K, Jha B. Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym. 2011;83(2):852–857.
  • Babu RP, Connor KO, Seeram R. Current progress on bio-based polymers and their future trends. Prog Biomater. 2013;2(1):1–16.
  • Gopi S, Amalraj A, Thomas S. Effective drug delivery system of biopolymers based on nanomaterials and hydrogels a review. Drug Des. 2016;5:1–7.
  • Nandini AP, Geetha BH, Mahadevappa YK. Smart biopolymers and their biomedical applications. Procedia Manuf. 2017;12:263–279.
  • Van De V, Kiekens P. Biopolymers, overview of several properties and consequences on their applications. Polym Test. 2002;21(4):433–442.
  • Mishra A, Jha B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Biores Techno. 2009;100(13):3382–3386.
  • Cybulska J, Halaj M, Cepak V, et al. Nanostructure features of microalgae biopolymer. Starch Starke. 2016;68(7–8):7–8.
  • Ehret P. Biodegradable nonwovens, ITB Nonwovens industrial textiles. Deposa Nonwovens: Deposable Disposables’, INSIGHT 96 San Antonio. Vol. 3, 1996. p. 29–30.
  • Kritika S, Pragya R. Study of polyhydroxybutyrate producing bacillus sp. isolated from soil. Res J Recent Sci. 2015; (4): 61–69.
  • Salerno A, Pascual CD. Bio-based polymers, supercritical fluids and tissue engineering. Process Biochem. 2015;50(5):826–838.
  • Suriyamongkol P, Weselake R, Narine S, et al. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plant a review. Biotechnol Adv. 2007;25(2):148–175.
  • Abeed FMBD, Reddy PMRM, Khan HA. Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16 from jatropha oil as carbon source. Bioprocess Biosyst Eng. 2014;37(5):943–951.
  • Veeramanikandan V, Mrudula S, Yuvaraj R, et al. Optimization of poly b-hydroxy butyrate production by Alcaligenes latus MTCC2311 using central composite design. Int J Comput Appl. 2013;68:0975–8887.
  • Madison LL, Huisman GW. Metabolic engineering of poly(β)hydroxyalkanoates, from DNA to plastic. Microbiol Mol Biol Rev. 1999;63:21–53.
  • Vincenzini M, Sili C, Philippis R, et al. Occurrence of poly-beta-hydroxybutyrate in Spirulina species. J Bacteriol. 1990;172(5):2791–2792.
  • Valappil SP, Misra SK, Boccaccini AR, et al. Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised bacillus cereus SPV. J Biotechnol. 2007;132(3):251–258.
  • Balaji S, Gopi K, Muthuvelan B. A review on production of poly hydroxybutyrates from cyanobacteria for the production of bioplastics. Algal Res. 2013;2(3):278–285.
  • Khetkorn W, Aran I, Peter L, et al. Enhancement of poly(β)hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Bioresour Technol. 2016;214:761–768.
  • Zinn M, Witholtb B, Eglia T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanote. Adv Drug Delive Rev. 2001;53(1):5–21.
  • Ojumu TV, Yu J, Solomon BO. Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr J Biotechnol. 2004;3(1):18–24.
  • Saratale RG, Chandrasekar K, Ackmez M, et al. Bioelectrochemical systems using microalgae A concise research update. Chemosphere. 2017;177:35–43.
  • Ming C, Chong X, Xie Y. Photocatalytic nitrogen fixation, the role of defects in photocatalysts. J Mater Chem A. 2019;7(34):19616–19633.
  • Ansari S, Fatma T. Cyanobacterial polyhydroxybutyrate (PHB), screening, optimization and characterization. PLoS ONE. 2016;11(6):158–168.
  • Hansmann E. Pigment analysis in handbook of phycological methods, culture methods and growth measurements. Stein JR, Edited by. New York: Cambridge University Press; 1973. p. 359–368.
  • Lowry OH, Rosenbrough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Osborne B, Raven JA. Growth light level and photon absorption by cells of Chlamydomonas rheinhardii, Dunaliella tertiolecta (Chlorophyceae, Volvocales), Scenedesmus obliquus (Chlorophyceae, Chlorococcales) and Euglena viridis (Euglenophyceae, Euglenales). Br Phycol J. 1986;21(3):303–313.
  • Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497–509.
  • Rebecca R, Iyer PR. Isolation and optimization of PHB (Poly-β-hydroxybutyrate) based biodegradable plastics from Chlorella vulgaris. J Bioremediat Biodegrad. 2018;9(2):433.
  • Sayeda MA, Gamila HA. Analysis of polyhydroxybutrate and bioplastic production from microalgae. Bull National Res Centre. 2019;43(1):97.
  • Kavitha G, Chidambaram K, Krishnan S, et al. Mass cultivation of UV-B adapted Arthrospira platensis RRGK under open raceway pond for the production of Poly-hydroxyl butyrate. Int J Biol Macromol. 2016;93:1304–1316.
  • DOE (U.S. Department of Energy) (2016) National algal biofuels technology review. U.S. department of energy, office of energy efficiency and renewable energy, bioenergy technologies office. Bioenergy energy gov.
  • Nishioka M, Nakai K, Miyake M, et al. Production of poly(β)hydroxybutyrate by thermophilic cyanobacteria Synechococcus sp. MA19, under phosphate limitation. Biotechnol Lett. 2001;23(14):1095–1099.
  • Arun A, Murrugappan R, Ravindran ADD, et al. Utilization of various industrial wastes for the production of poly(β)hydroxy butyrate (PHB) by Alcaligenes eutrophus. Afr J Biotechnol. 2006;5:1524–1527.
  • Donya K, Pflügl S, Nischkauer W, et al. Photosynthetic poly-β-hydroxybutyrate accumulation in unicellular cyanobacterium Synechocystis sp. PCC 6714. AMB Expr. 2017;7(1):143.
  • Dayananda C, Sarada R, Rani U, et al. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenerg. 2007;31(1):87–93.
  • Nakamura Y, Tanaka K, Matsumura Y, et al. Flow electrosynthesis and molecular weight control of polyphenylene deriving from 1,4-Bis(trimethylsilyl)benzene: effect of a silyl substituent on the coupling position, the electrochemical society of Japan. electrochemistry. in press; 2020. https://doi.org/https://doi.org/10.5796/electrochemistry.20-00060
  • Trofimov BA, Myachina GF, Korzhova SA, et al. New electrochemically active highly sulfurized polyconjugated polymers. Russ J Electrochem. 2002;38(2):188–192.
  • Revell JD, Dörner B, White PD, et al. PS-COD and PS-9-BBN: polymer-supported reagents for solution-phase parallel synthesis Sigma Aldrich. Org Lett. 2005;-2-25(PMID):15727452.
  • Ganesan A. Solid-phase synthesis in the twenty-first century. Sigma Aldrich Mini Reviews in Medicinal Chemistry. 2006;-2-7(PMID):16457628.
  • Ohno H, Takeoka Y, Miyamura K, et al. Novel synthesis of 3-Azabicyclo[3.1.0]hexanes by unusual Palladium(0)-catalyzed cyclopropanation of allenenes. Org Lett. 2003;5(25):4763–4766.
  • Uehara K, Olson JM. Aggregation of bacteriochlorophyll c homologs to dimers, tetramers, and polymers in water-saturated carbon tetrachloride. Photosynth Res. 1992;33(3):251–257.
  • Orf GS, Collins AM, Niedzwiedzki DM, et al. Polymer-chlorosome nanocomposites consisting of nonnative combinations of self-assembling bacteriochlorophylls Langmuir. 2017; 27; 33(25): 6427-6438.
  • Herrero O, Planello R, Morcillo G. The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanisms in Chironomus riparius larvae. Chemosphere. 2015;128:266–277.
  • Cerhr. Monograph on the potential human reproductive and developmental effects of Butyl Benzyl Phthalate (BBP). Bethesda: National Institutes of Health; 2003.
  • CPSC. Toxicity review for Benzyl-n-Butyl Phthalate (Benzyl Butyl Phthalate or BBP). Bethesda: United States Consumer Product Safety Commission; 2010.
  • EFSA (European Food Safety Authority). Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the commission related to Butylbenzylphthalate (BBP) for use in food contact materials. EFSA J. 2005b;241:1–14. Question No. EFSA-Q-2003-190.
  • EFSA (European Food Safety Authority). Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the Commission related to Di-Butylphthalate (DBP) for use in food contact materials. EFSA J. 2005a;242:1–17. Question No. EFSA-Q-2003-192.
  • Aylward LL, Hays SM, Gagne M, et al. Derivation of biomonitoring equivalents for di-n-butyl phthalate (DBP), benzylbutyl phthalate (BzBP) and diethyl phthalate (DEP). Regul Toxicol Pharmacol. 2009;55(3):259–267.
  • Wormuth M, Scheringer M, Vollenweider M, et al. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006;26(3):803–824.
  • Keipert S, Siebenbrodt I. Preparations of preoral sustained-release preparations with a biological polymer base. 5. Pharmazie. 1990 July;45(8):594–595. PMID: 2080206.
  • Nter KGU, Lohmar E, Rupprich N, et al. Chloroacetic acids. Ullmann’s fine chemicals Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469. Weinheim Germany. 2014;2:473–488.
  • SAAPedia 2011-2021. Cyclotrisiloxane, hexamethyl- SAAPedia all rights reserved. Update 20140828 (1);20200918 (2). https://www.surfactant.top/en/saa/?type=detail&id=1966
  • Chojnowski J, Cypryk M, Kazmierski KO. Cationic polymerization of a model cyclotrisiloxane with mixed siloxane units initiated by a protic acid. mechanism of polymer chain formation. Macromolecules. 2002;35(27):9904–9912.
  • Kendrick Bhukan TC, Parbhoo M, White JW. 25 - polymerization of cyclosiloxanes. Comprehensive Polymer Sci Supplements. 1989;4:459–523.
  • Sukeshinia AM, Kulkarnia AR, Sharmab A. PEO based solid polymer electrolyte plasticized by dibutyl Phthalate. Solid State Ion. 1998;113–115(1–2):179–186.
  • Sukeshini AM, Nishimoto A, Watanabe M. Transport and electrochemical characterization of plasticized poly(vinyl chloride) solid electrolytes. Solid State Ionics. 1996; 86-88(Part 1):385–393.
  • Juan H, Ruihe L, Zhu J, et al. Selective solid-phase extraction of dibutyl phthalate from soybean milk using molecular imprinted polymers. Anal Chim Acta. 2010;661(2):215–221.
  • Kang Y, Zhang L, Lai Q, et al. Molecularly imprinted polymer based on metal-organic frameworks: synthesis and application on determination of dibutyl phthalate. Polymer-Plastics Technol and Mater. 2020, 1-10. https://doi.org/https://doi.org/10.1080/25740881.2020.1786582
  • Ramesh S, Yahaya AH, Arof AK. Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ion. 2002;152– 153:291–294.
  • Okada M, Fqjimoto K, Nose, et al. Nose phase separation induced by polymerization of 2-Chlorostyrene in a PolystyreneAIibutyl Phthalate mixture. Macromolecules. 1995;28(6):1795–1800.
  • Xiaojiao L, Wang LL, Duan H, et al. Electro chemical sens or based on magnetic graphene oxide @ gold nanoparticles-molecular imprinted polymers for determination of dibutyl phthalate. Talanta. 2015, 131: 354–360.
  • Kalberer M, Paulsen D, Sax M, et al. Identification of polymers as major components of atmospheric organic aerosols reports. Science. 2004;303(5664):1659–1662. www.sciencemag.org
  • Xie F, Hu W, Ding L, et al. Synthesis of microporous organic polymers via radical polymerization of fumaronitrile with divinylbenzene. Polym Chem. 2017;8(39):6106–6111.
  • De Oliveira DR, Mazzetto SE, Lomonaco D. Synthesis and polymerization of Naphthoxazines containing furan groups: an approach to novel biobased and flame-resistant thermosets Hindawi. Int J Polym Sci. 2018:1–13.
  • Sheftel VO. 1-Hexadecanol indirect food additives and polymers. migration and toxicology. Boca Raton, FL: Lewis Publishers; 2000; 486.
  • Wojcik A, Kubiak M, Rotsztejn H. Influence of azelaic and mandelic acid peels on sebum secretion in ageing women. Postep Derm Alergol. 2013;3:140–145.
  • CAS  RN. Screening assessment for the challenge Phenol, 2,6-bis(1,1-dimethylethyl)-4-(1-methylpropyl)- chemical abstracts service registry number. Environ Canada Health Canada. 2010; 17540-75-9.
  • Godswill AC, Godspel AC. Physiological effects of plastic wastes on the endocrine system (Bisphenol A, Phthalates, Bisphenol S, PBDEs, TBBPA). Int J Bioinformatics Computational Biol. 2019;4(2):11–29.
  • Kaller M, Basf SE, Koch M. Process for the production of carboxylic esters and use of these as plasticizers. United States patent. 2017;A1(9):776–949 B2.
  • Lorz PM, Towae FK, Enke W, et al. Phthalic acid and derivatives. Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim 2012; 12: 131–180. https://doi.org/https://doi.org/10.1002/14356007.a20_181.pub2
  • APA Pyridine, 2-ethenyl-, polymer with 1,3-butadiene and ethenylbenzene National Center for Biotechnology Information. PubChem Compound Summary for CID 168262. 2021 Apr 12 from https://pubchem.ncbi.nlm.nih.gov/compound/168262.
  • Hou C, Rongjun Q, Wang C, et al. Copolymerization kinetics of poly(acrylonitrile-ran-2- ethenyl-pyridine) and its degradation apparent activation energy. J Appl Polym Sci. 2008;107(4):2651–2655.
  • Greehberg S, Inclair D. The polymerization of silicic acid., 1955. Vol. 59(5): 435–440.
  • Goto K. Effect of pH on polymerization of silicic acid. J. Phys. Chem. Faculty of Engineering, Hokkaido University, Sappor, Japan, 1956; 60: 1007–1008.
  • Bergman I, Sybil Nelson E. The polymerization of silicic acid and its subsequent interaction with proteins and other hydrogen-bonding agents. J Colloid Sci. 1962;17(9):823–837.
  • Harold Wittcoff WC, Ferneuus. Benzene—the polymer former. J Chem Educ. 1981;58(3):270–272.
  • Britannica 2013, The editors of Encyclopaedia. Aniline Encyclopedia Britannica, https://www.britannica.com/science/aniline. Accessed 9 April 2021
  • Rohde A, Urland W. Synthesis crystal structure and magnetic behaviour of dimeric and polymeric gadolinium carboxylates with pentafluoropropionic acid. Inorganica Chim Acta. 2006;359(8):2448–2454.