1,786
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Modeling and analysis of recovery time for the COVID-19 patients: a Bayesian approach

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-12 | Received 27 Mar 2022, Accepted 11 Nov 2022, Published online: 12 Dec 2022

References

  • Abbas, K., Abbasi, N. Y., Ali, A., Khan, S. A., Manzoor, S., Khalil, A., … Altaf, M. (2019). Bayesian analysis of three-parameter Frechet distribution with medical applications. Computational and Mathematical Methods in Medicine, 2019, 9089856. doi:10.1155/2019/9089856
  • Adnan, H. (2021). Bayes estimators of Weibull-Lindley Rayleigh distribution parameters using Lindley’s approximation. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(12), 508–517.
  • Afify, A. Z., Yousof, H. M., Cordeiro, G. M., Ortega, E. M., & Nofal, Z. M. (2016). The Weibull Fréchet distribution and its applications. Journal of Applied Statistics, 43(14), 2608–2626. doi:10.1080/02664763.2016.1142945
  • Almongy, H. M., Almetwally, E. M., Aljohani, H. M., Alghamdi, A. S., & Hafez, E. (2021). A new extended Rayleigh distribution with applications of COVID-19 data. Results in Physics, 23, 104012. doi:10.1016/j.rinp.2021.104012
  • AlSayegh, M. A. K., & Iqbal, A. (2021). The impact of the precautionary measures taken in the kingdom of Bahrain to contain the outbreak of COVID-19. Arab Journal of Basic and Applied Sciences, 28(1), 195–203. doi:10.1080/25765299.2021.1903143
  • Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. METRON, 71(1), 63–79. doi:10.1007/s40300-013-0007-y
  • Bakar, M. A., Mohamed, N., Pratama, D. A., Yusran, M. F. A., Aleng, N. A., Yanuar, Z., & Niken, L. (2021). Modelling lock-down strictness for COVID-19 pandemic in ASEAN countries by using hybrid ARIMA-SVR and hybrid SEIR-ANN. Arab Journal of Basic and Applied Sciences, 28(1), 204–224. doi:10.1080/25765299.2021.1902606
  • Bherwani, H., Anjum, S., Kumar, S., Gautam, S., Gupta, A., Kumbhare, H., … Kumar, R. (2021). Understanding COVID-19 transmission through Bayesian probabilistic modeling and GIS-based Voronoi approach: A policy perspective. Environment, Development and Sustainability, 23(4), 5846–5864. doi:10.1007/s10668-020-00849-0
  • Car, Z., Baressi Šegota, S., Anđelić, N., Lorencin, I., & Mrzljak, V. (2020). Modeling the spread of COVID-19 infection using a multilayer perceptron. Computational and Mathematical Methods in Medicine, 2020, 5714714. doi:10.1155/2020/5714714
  • De Oliveira, A. C. S., Morita, L. H. M., Da Silva, E. B., Zardo, L. A. R., Fontes, C. J. F., & Granzotto, D. C. T. (2020). Bayesian modeling of COVID-19 cases with a correction to account for under-reported cases. Infectious Disease Modelling, 5, 699–713. doi:10.1016/j.idm.2020.09.005
  • Din, A., Li, Y., Khan, T., & Zaman, G. (2020). Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China. Chaos, Solitons, and Fractals, 141, 110286. doi:10.1016/j.chaos.2020.110286
  • Fréchet, M. (1927). Sur la loi de probabilité de l‘écart maximum. Annales Societatis Mathematicae Polonae, 6, 93–116. doi:10.11429/sugaku1947.46.39
  • Gencer, G., & Gencer, K. (2019). Comparison of maximum likelihood and Bayes estimators under symmetric and asymmetric loss functions by means of Tierney Kadane’s approximation for Weibull distribution. Turkish Journal of Science and Technology, 14(2), 69–78.
  • Gencer, G., & Gencer, K. (2020). Estimations for the odd Weibull distribution under progressive type-II right censored samples. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 29–36.
  • Haj Ismail, A., Dawi, E., Jwaid, T., Mahmoud, S. T., & AbdelKader, A. (2021). Simulation of the evolution of the Covid-19 pandemic in the United Arab Emirates using the sir epidemical model. Arab Journal of Basic and Applied Sciences, 28(1), 128–134. doi:10.1080/25765299.2021.1890900
  • Jordan, R. E., Adab, P., & Cheng, K. (2020). Covid-19: Risk factors for severe disease and death. British Medical Journal, 368, m1198. doi:10.1136/bmj.m1198
  • Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. The Journal of Hospital Infection, 104(3), 246–251. doi:10.1016/j.jhin.2020.01.022
  • Korkmaz, M. Ç., Yousof, H. M., & Ali, M. M. (2017). Some theoretical and computational aspects of the odd Lindley Fréchet distribution. İstatistikçiler Dergisi: İstatistik ve Aktüerya, 10(2), 129–140.
  • Krishna, E., Jose, K., Alice, T., & Ristić, M. M. (2013). The Marshall-Olkin Fréchet distribution. Communications in Statistics - Theory and Methods, 42(22), 4091–4107. doi:10.1080/03610926.2011.648785
  • Kutal, D. H., & Qian, L. (2018). A non-mixture cure model for right-censored data with Fréchet distribution. Stats, 1(1), 176–188. 10.3390/stats1010013.
  • Lavanya, A., & Alexander, T. L. (2016). Estimation of parameters using Lindley’s method. International Journal of Advanced Research, 4(12), 1767–1778. doi:10.21474/IJAR01/2579
  • Levy, T. J., Richardson, S., Coppa, K., Barnaby, D. P., McGinn, T., … Becker, L. B, the Northwell COVID-19 Research Consortium. (2020). Estimating survival of hospitalized COVID-19 patients from admission information. medRxiv, 1–29.
  • Lindley, D. V. (1980). Approximate Bayesian methods. Trabajos de Estadistica Y de Investigacion Operativa, 31(1), 223–245. doi:10.1007/BF02888353
  • Lutchmansingh, D. D., Knauert, M. P., Antin-Ozerkis, D. E., Chupp, G., Cohn, L., Dela Cruz, C. S., … Possick, J. D. (2021). A clinic blueprint for post-COVID-19 RECOVERY: Learning from the past, looking to the future. Chest, 159(3), 949–958. doi:10.1016/j.chest.2020.10.067
  • Manevski, D., Ružić Gorenjec, N., Kejžar, N., & Blagus, R. (2020). Modeling COVID-19 pandemic using Bayesian analysis with application to Slovene data. Mathematical Biosciences, 329, 108466. doi:10.1016/j.mbs.2020.108466
  • Nemati, M., Ansary, J., & Nemati, N. (2020). Machine-learning approaches in COVID-19 survival analysis and discharge-time likelihood prediction using clinical data. Patterns (New York, N.Y.), 1(5), 100074. doi:10.1016/j.patter.2020.100074
  • Nesteruk, I. (2020). Statistics-based predictions of coronavirus epidemic spreading in mainland China. doi:10.1101/2020.02.12.20021931
  • Niazkar, M., Eryılmaz Türkkan, G., Niazkar, H. R., & Türkkan, Y. A. (2020). Assessment of three mathematical prediction models for forecasting the COVID-19 outbreak in Iran and Turkey. Computational and Mathematical Methods in Medicine, 2020, 7056285. doi:10.1155/2020/7056285
  • Oguntunde, P. E., Khaleel, M. A., Ahmed, M. T., & Okagbue, H. I. (2019). The Gompertz Fréchet distribution: Properties and applications. Cogent Mathematics & Statistics, 6(1), 1568662. doi:10.1080/25742558.2019.1568662
  • Rayleigh, L. (1880). XII. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(60), 73–78. doi:10.1080/14786448008626893
  • Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., … Hoelscher, M. (2020). Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. The New England Journal of Medicine, 382(10), 970–971. doi:10.1056/NEJMc2001468
  • Sana, M., & Faizan, M. (2019). Bayesian estimation for Nadarajah-Haghighi distribution based on upper record values. Pakistan Journal of Statistics and Operation Research, 15(1), 217–230. doi:10.18187/pjsor.v15i1.2569
  • Shafiq, A., Lone, S., Sindhu, T. N., El Khatib, Y., Al-Mdallal, Q. M., & Muhammad, T. (2021). A new modified Kies Fréchet distribution: Applications of mortality rate of Covid-19. Results in Physics, 28, 104638. doi:10.1016/j.rinp.2021.104638
  • Sharma, V. K., Singh, S. K., & Singh, U. (2017). Classical and Bayesian methods of estimation for power Lindley distribution with application to waiting time data. Communications for Statistical Applications and Methods, 24(3), 193–209. doi:10.5351/CSAM.2017.24.3.193
  • Tang, Y., & Wang, S. (2020). Mathematic modeling of COVID-19 in the United States. Emerging Microbes & Infections, 9(1), 827–829. doi:10.1080/22221751.2020.1760146
  • Tanis, C., & Saracoglu, B. (2019). Comparisons of six different estimation methods for log-Kumaraswamy distribution. Thermal Science, 23(Suppl. 6), 1839–1847. doi:10.2298/TSCI190411344T
  • Tierney, L., & Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393), 82–86. doi:10.1080/01621459.1986.10478240
  • Vodˇa, V. G. (1972). On the inverse Rayleigh distributed random variable. Reports of Statistical Application Research JUSE, 19(4), 13–21.
  • WHO. (2020a). Coronavirus disease 2019 (COVID-19), Situation Report – 51. WHO.
  • WHO. (2020b). Coronavirus disease 2019 (COVID-19), Situation Report – 53. WHO
  • Yousof, H. M., Altun, E., & Hamedani, G. (2018). A new extension of Frechet distribution with regression models, residual analysis and characterizations. Journal of Data Science, 16(4), 743–770. doi:10.6339/JDS.201810_16(4).00005
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., … Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. doi:10.1056/NEJMoa2001017
  • Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z., … Wu, J. (2020). SARS-CoV-2 viral load in upper respiratory specimens of infected patients. The New England Journal of Medicine, 382(12), 1177–1179. doi:10.1056/NEJMc2001737
  • Zuo, M., Khosa, S. K., Ahmad, Z., & Almaspoor, Z. (2020). Comparison of COVID-19 pandemic dynamics in Asian countries with statistical modeling. Computational and Mathematical Methods in Medicine, 2020, 4296806. doi:10.1155/2020/4296806