993
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

On numerical soliton and convergence analysis of Benjamin-Bona-Mahony-Burger equation via octic B-spline collocation

ORCID Icon &
Pages 146-163 | Received 15 Nov 2022, Accepted 11 Mar 2023, Published online: 31 Mar 2023

References

  • Abbasbandy, S., & Shirzadi, A. (2010). The first integral method for modified Benjamin–Bona–Mahony equation. Communications in Nonlinear Science and Numerical Simulation, 15(7), 1759–1764. doi:10.1016/j.cnsns.2009.08.003
  • Al-Jawary, M. A., Radhi, G. H., & Ravnik, J. (2018). Daftardar-Jafari method for solving nonlinear thin film flow problem. Arab Journal of Basic and Applied Sciences, 25(1), 20–27. doi:10.1080/25765299.2018.1449345
  • Al-Khaled, K., Momani, S., & Alawneh, A. (2005). Approximate wave solutions for generalized Benjamin-Bona-Mahony-Burgers equations. Applied Mathematics and Computation, 171, 281–292. doi:10.1016/j.amc.2005.01.056
  • Arora, G., Mittal, R. C., & Singh, B. K. (2014). Numerical solution of BBM-Burger equation with quartic B-spline collocation method. Journal of Engineering Science and Technology, 9, 104–116.
  • Arora, S., Jain, R., & Kukreja, V. K. (2020). Solution of Benjamin-Bona-Mahony-Burgers equation using collocation method with quintic Hermite splines. Applied Numerical Mathematics, 154, 1–16. doi:10.1016/j.apnum.2020.03.015
  • Arqub, O. A. (2019). Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates. Journal of Applied Mathematics and Computing, 59(1-2), 227–243.
  • Arqub, O. A. (2019). Numerical algorithm for the solutions of fractional order systems of dirichlet function types with comparative analysis. Fundamenta Informaticae, 166(2), 111–137.
  • Barenblatt, G. I., Zheltov, I. P., & Kochina, I. N. (1960). Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. Journal of Applied Mathematics and Mechanics, 24(5), 1286–1303. doi:10.1016/0021-8928(60)90107-6
  • Bayarassou, K. (2019). Fourth-order accurate difference schemes for solving Benjamin–Bona–Mahony–Burgers (BBMB) equation. Engineering with Computers, 37(1), 1–16.
  • Bo, W. B., Wang, R. R., Fang, Y., Wang, Y. Y., & Dai, C. Q. (2023). Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dynamics, 111, 1577–1588. doi:10.1007/s11071-022-07884-8
  • Boor, C. D. (1968). On the convergence of odd degree spline interpolation. Journal of Approximation Theory, 1(4), 452–463.
  • Casas, F. (1996). Solution of linear partial differential equations by Lie algebraic methods. The Journal of Computational and Applied Mathematics. 76(1-2), 159–170.
  • Chen, P. J., & Gurtin, M. E. (1968). On a theory of heat conduction involving two temperatures. Zeitschrift fur Angewandte Mathematik und Physik. 19(4), 614–627. doi:10.1007/BF01594969
  • Dehghan, M., & Abbaszadeh, M. (2015). The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. The Journal of Computational and Applied Mathematics. 286, 211–231. Mohebbi, doi:10.1016/j.cam.2015.03.012
  • Dehghan, M., Abbaszadeh, M., & Mohebbi, A. (2014). The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Computers & Mathematics with Applications, 68(3), 212–237. doi:10.1016/j.camwa.2014.05.019
  • Dehghan, M., Shafieeabyaneh, N., & Abbaszadeh, M. (2021). Numerical and theoretical discussions for solving nonlinear generalized Benjamin–Bona–Mahony–Burgers equation based on the Legendre spectral element method. Numerical Methods for Partial Differential Equations, 37(1), 360–382. doi:10.1002/num.22531
  • Fakhari, A., & Domairry, G. (2007). Approximate explicit solutions of nonlinear BBMB equations by homotopy analysis method and comparison with the exact solution. Physics Letters A, 368(1–2), 64–68. doi:10.1016/j.physleta.2007.03.062
  • Fang, J. J., Mou, D. S., Zhang, H. C., & Wang, Y. Y. (2021). Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model. Optik, 228, 166–186. doi:10.1016/j.ijleo.2020.166186
  • Fang, Y., Wu, G. Z., Wen, X. K., Wang, Y. Y., & Dai, C. Q. (2022). Predicting certain vector optical solitons via the conservation-law deep-learning method. Optics & Laser Technology. 155, 108428. doi:10.1016/j.optlastec.2022.108428
  • Fyfe, D. J. (1969). The use of cubic splines in the solution of two-point boundary value problems. Computer Journal, 12(2), 188–192. doi:10.1093/comjnl/12.2.188
  • Ganji, Z. Z., Ganji, D. D., & Bararnia, H. (2009). Approximate general and explicit solutions of nonlinear BBMB equations by Exp-Function method. Applied Mathematical Modelling, 33(4), 1836–1841. doi:10.1016/j.apm.2008.03.005
  • Gardner, L. R. T., Gardner, G. A., & Dag, I. A. (1995). B-spline finite element method for the regularized long wave equation. Communications in Numerical Methods in Engineering, 11, 59–68. doi:10.1002/cnm.1640110109
  • Gebremedhin, G. S., & Jena, S. R. (2020). Approximate of solution of a fourth order ordinary differential equations via tenth step block method. International Journal of Computing Science and Mathematics. 11(3), 253–262. doi:10.1504/IJCSM.2020.10028216
  • Geng, K. L., Mou, D. S., & Dai, C. Q. (2023). Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations. Nonlinear Dynamics. 111, 603–617. doi:10.1007/s11071-022-07833-5
  • Hossen, M. B., Roshid, H. O., & Ali, M. Z. (2018). Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2 + 1)-dimensional Breaking Soliton equation. Physics Letters A, 382(19), 1268–1274. doi:10.1016/j.physleta.2018.03.016
  • Hossen, M. B., Roshid, H. O., & Ali, M. Z. (2019). Multi-soliton, breathers, lumps and interaction solution to the (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation. Heliyon, 5(10), E02548. doi:10.1016/j.heliyon.2019.e02548
  • Hussain, A., Bano, S., Khan, I., Baleanu, D., & Sooppy Nisar, K. (2020). Lie symmetry analysis, explicit solutions and conservation laws of a spatially two-dimensional Burgers–Huxley equation. Symmetry, 12(1), 170. doi:10.3390/sym12010170
  • Jena, S. R., & Gebremedhin, G. S. (2020). Approximate solution of a fifth order ordinary differential equations with block method. International Journal of Computing Science and Mathematics, 12(4), 413–426. doi:10.1504/IJCSM.2020.112652
  • Jena, S. R., & Gebremedhin, G. S. (2021a). Decatic B-spline collocation scheme for approximate solution of Burgers’ equation. Numerical Methods for Partial Differential Equations, doi:10.1002/num.22747
  • Jena, S. R., & Gebremedhin, G. S. (2021b). Computational technique for heat and advection–diffusion equations. Soft Computing, 25(16), 11139–11150. doi:10.1007/s00500-021-05859-2
  • Jena, S. R., & Gebremedhin, G. S. (2021c). Numerical treatment of Kuramoto-Sivashinsky equation on B-spline collocation. Arab Journal of Basic and Applied Sciences, 28(1), 283–291.
  • Jena, S. R, & Gebremedhin, G. S. (2022). Octic B-spline collocation scheme for numerical investigation of fifth order boundary value problems. International Journal of Applied and Computational Mathematics, 8(5), 241. doi:10.1007/s40819-022-01437-8
  • Jena, S. R., & Gebremedhin, G. S. (2023). Computational algorithm for MRLW equation using B-spline with BFRK scheme. Soft Computing, 1–16. doi:10.1007/s00500-023-07849-y
  • Jena, S. R., Mohanty, M., & Misra, S. K. (2018). Ninth step block method for numerical solution of fourth order ordinary differential equation. Advances in Modelling and Analysis A, 55(2), 45–56.
  • Jena, S. R., Naya, K., & Acharya, M., M. (2017). Application of mixed quadrature rule on electromagnetic field problems. Mathematical Modelling and Analysis, 28, 267–277. doi:10.1007/s10598-017-9363-4
  • Jena, S. R., Senapati, A., & Gebremedhin, G. S. (2020a). Approximate solution of MRLW equation in B-Spline environment. Mathematical Sciences, 14(3), 345–357. doi:10.1007/s40096-020-00345-6
  • Jena, S. R., Senapati, A., & Gebremedhin, G. S. (2020b). Numerical study of solitons in BFRK scheme. International Journal of Mechanics and Control, 21(2), 163–175.
  • Kadalbajoo, M. K., & Awasthi, A. (2008). Crank–Nicolson finite difference method based on a midpoint upwind scheme on a non-uniform mesh for time-dependent singularly perturbed convection–diffusion equations. International Journal of Computer Mathematics, 85(5), 771–790. doi:10.1080/00207160701459672
  • Kukreja, V. K. (2022). Numerical treatment of Benjamin-Bona-Mahony-Burgers equation with fourth-order improvised B-spline collocation method. Journal of Ocean Engineering and Science, 7(2), 99–111. doi:10.1016/j.joes.2021.07.001
  • Kumar, R., & Baskar, S. (2016). B-spline quasi-interpolation based numerical methods for some Sobolev type equations. The Journal of Computational and Applied Mathematics. 292, 41–66. doi:10.1016/j.cam.2015.06.015
  • Kumar, V., Gupta, R. K., & Jiwari, R. (2013). Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin—Bona—Mahony—Burger (BBMB) Equation. Communications in Theoretical Physics, 60(2), 175. doi:10.1088/0253-6102/60/2/06
  • Kumari, A., & Kukreja, V. K. (2022). Sixth orderi Hermite collocation method for analysis of MRLW equation. Journal of Ocean Engineering and Science, Available online 24 June
  • Kutluay, S., & Esen, A. (2006). A finite difference solution of the regularized long-wave equation. Mathematical Problems in Engineering, 2006(1), 1–14. doi:10.1155/MPE/2006/85743
  • Lakestani, M., & Dehghan, M. (2012). Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions. Applied Mathematical Modelling, 36(2), 605–617. doi:10.1016/j.apm.2011.07.028
  • Lucas, T., R. (1974). Error bounds for interpolating cubic splines under various end conditions. SIAM Journal on Numerical Analysis. 11(3), 569–584. doi:10.1137/0711049
  • Mittal, A. K., Balyan, L. K., & Tiger, D. (2018). Numerical solution of Benjamin-Bona-MahonyBurger (BBMB) and regularized long-wave (RLW) equations using time-space pseudo-spectral method. Journal of Physics: Conference Series. 1039(1), 012002. doi:10.1088/1742-6596/1039/1/012002
  • Mohanty, M., & Jena, S. R. (2018). Differential transformation method (DTM) for approximate solution of ordinary differential equation (ODE). Advances in Modelling and Analysis B, 61(3), 135–138. doi:10.18280/ama_b.610305
  • Mohanty, M., Jena, S. R., & Misra, S. K. (2021a). Approximate solution of fourth order differential equation. Advances in Mathematics: Scientific Journal, 10(1), 621–628. doi:10.37418/amsj.10.1.62
  • Mohanty, M., Jena, S. R., & Misra, S. K. (2021b). Mathematical modelling in engineering with integral transforms via modified Adomian decomposition method. Mathematical Modelling of Engineering Problems, 8(3), 409–417. doi:10.18280/mmep.080310
  • Omrani, K., & Ayadi, M. (2008). Finite difference discretization of the Benjamin-Bona-Mahony-Burgers equation. Numerical Methods for Partial Differential Equations, 24(1), 239–248. doi:10.1002/num.20256
  • Oruç, O. (2017). A new algorithm based on Lucas polynomials for approximate solution of 1D and 2D nonlinear generalized Benjamin–Bona–Mahony–Burgers equation. Computers & Mathematics with Applications, 74(12), 3042–3057. doi:10.1016/j.camwa.2017.07.046
  • Peregrine, D. H. (1966). Calculations of the development of an undular bore. Journal of Fluid Mechanics, 25(2), 321–330. doi:10.1017/S0022112066001678
  • Senapati, A., & Jena, S. R. (2022). A computational scheme for fifth order boundary value problems. International Journal of Information Technology, 14(3), 1397–1404. doi:10.1007/s41870-022-00871-7
  • Senapati, A., & Jena, S. R. (2023). Generalized Rosenau-RLW equation in B-spline scheme via BFRK approach. Nonlinear Studies, 30(1), 73–85.
  • Shallal, M. A., Ali, K. K., Raslan, K. R., & Taqi, A. H. (2019). Septic B-spline collocation method for numerical solution of the coupled Burgers’ equations. Arab Journal of Basic and Applied Sciences, 26(1), 331–341. doi:10.1080/25765299.2019.1628687
  • Shallu & Kukreja, V. K. (2021). An improvised collocation algorithm with specific end conditions for solving modified Burgers equation. Numerical Methods for Partial Differential Equations, 37(1), 874–896. doi:10.1002/num.22557
  • Tari, H., & Ganji, D. D. (2007). Approximate explicit solutions of nonlinear BBMB equations by He’s methods and comparison with the exact solution. Physics Letters A, 367, 95–101. doi:10.1016/j.physleta.2007.02.085
  • Ting, T. W. (1963). Certain non-steady flows of second-order fluids. Archive for Rational Mechanics and Analysis, 14(1), 1–26. doi:10.1007/BF00250690
  • Wang, G. (2021a). A new (3 + 1)-dimensional Schrödinger equation: Derivation, soliton solutions and conservation laws. Nonlinear Dynamics. 104(2), 1595–1602. doi:10.1007/s11071-021-06359-6
  • Wang, G. (2021b). A novel (3 + 1)-dimensional sine-Gorden and a sinh-Gorden equation: Derivation, symmetries and conservation laws. Applied Mathematics Letters. 113, 106768. doi:10.1016/j.aml.2020.106768
  • Wang, G. (2021c). Symmetry analysis, analytical solutions and conservation laws of a generalized KdV–Burgers–Kuramoto equation and its fractional version. Fractals, 29(04), 2150101. doi:10.1142/S0218348X21501012
  • Wang, G., & Wazwaz, A. M. (2022a). A new (3 + 1)-dimensional KdV equation and mKdV equation with their corresponding fractional forms. FRACTALS (Fractals), 30(04), 1–8. doi:10.1142/S0218348X22500815
  • Wang, G., & Wazwaz, A. M. (2022b). On the modified Gardner type equation and its time fractional form. Chaos, Solitons & Fractals, 155, 111694. doi:10.1016/j.chaos.2021.111694
  • Wang, G., Yang, K., Gu, H., Guan, F., & Kara, A. H. (2020). A (2 + 1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions. Nuclear Physics B. 953, 114956. doi:10.1016/j.nuclphysb.2020.114956
  • Wen, X. K., Wu, G. Z., Liu, W., & Dai, C. Q. (2022). Dynamics of diverse data-driven solitons for the three-component coupled nonlinear Schrödinger model by the MPS-PINN method. Nonlinear Dynamics, 109(4), 3041–3050. doi:10.1007/s11071-022-07583-4
  • Wen, X., Feng, R., Lin, J., Liu, W., Chen, F., & Yang, Q. (2021). Distorted light bullet in a tapered graded-index waveguide with PT symmetric potentials. Optik, 248, 168092. doi:10.1016/j.ijleo.2021.168092
  • Wu, H. Y., & Jiang, L. H. (2022). One-component and two-component Peregrine bump and integrated breather solutions for a partially nonlocal nonlinearity with a parabolic potential. Optik, 262, 169250. doi:10.1016/j.ijleo.2022.169250
  • Zarebna, M., & Parvaz, R. (2020). Error analysis of the numerical solution of the Benjamin-Bona-Mahony-Burgers equation. Boletim da Sociedade Paranaense de Matematica, 38(3), 177–191. doi:10.5269/bspm.v38i3.34498
  • Zarebnia, M., & Parvaz, R. (2016). On the numerical treatment and analysis of Benjamin–Bona–Mahony–Burgers equation. Journal of Applied Mathematics and Computing. 284, 79–88. doi:10.1016/j.amc.2016.02.037