892
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Colorimetric parameters for bloodstain characterization by smartphone

, ORCID Icon & ORCID Icon
Pages 197-207 | Received 10 Oct 2022, Accepted 18 Mar 2023, Published online: 05 Apr 2023

References

  • Apyari, V. V., Gorbunova, M. V., Isachenko, A. I., Dmitrienko, S. G., & Zolotov, Y. A. (2017). Use of household color-recording devices in quantitative chemical analysis. Journal of Analytical Chemistry, 72(11), 1127–1137. doi:10.1134/S106193481711003X
  • Bergmann, T., Heinke, F., & Labudde, D. (2017). Towards substrate-independent age estimation of blood stains based on dimensionality reduction and k-nearest neighbor classification of absorbance spectroscopic data. Forensic Science International, 278, 1–8. doi:10.1016/j.forsciint.2017.05.023
  • Bergmann, T., Leberecht, C., & Labudde, D. (2021). Analysis of the influence of EDTA-treated reference samples on forensic bloodstain age estimation. Forensic Science International, 325, 110876. doi:10.1016/j.forsciint.2021.110876
  • Cavalcanti, D. R., & Silva, L. P. (2019). Application of atomic force microscopy in the analysis of time since deposition (TSD) of red blood cells in bloodstains: A forensic analysis. Forensic Science International, 301, 254–262. doi:10.1016/j.forsciint.2019.05.048
  • Choi, W., Shin, J., Hyun, K. A., Song, J., & Jung, H. I. (2019). Highly sensitive and accurate estimation of bloodstain age using smartphone. Biosensors and Bioelectronics, 130, 414–419. doi:10.1016/j.bios.2018.09.017
  • Cugmas, B., & Štruc, E. (2020). Accuracy of an affordable smartphone-based teledermoscopy system for color measurements in canine skin. Sensors, 20(21), 6234. doi:10.3390/s20216234
  • Cugmas, B., Štruc, E., Kovče, U., Lužar, K., & Olivry, T. (2022). Evaluation of native canine skin color by smartphone-based dermatoscopy. Skin Research and Technology, 28(2), 299–304. doi:10.1111/srt.13130
  • Danyliuk, N., Tatarchuk, T., Kannan, K., & Shyichuk, A. (2021). Optimization of TiO2-P25 photocatalyst dose and H2O2 concentration for advanced photooxidation using smartphone-based colorimetry. Water Science and Technology, 84(2), 469–483. doi:10.2166/wst.2021.236
  • Fan, Y., Li, J., Guo, Y., Xie, L., & Zhang, G. (2021). Digital image colorimetry on smartphone for chemical analysis: A review. Measurement, 171, 108829. doi:10.1016/j.measurement.2020.108829
  • Fang, C., Liu, X., Zhao, J., Xie, B., Qian, J., Liu, W., … Yan, J. (2020). Age estimation using bloodstain miRNAs based on massive parallel sequencing and machine learning: A pilot study. Forensic Science International: Genetics, 47, 102300. doi:10.1016/j.fsigen.2020.102300
  • Gonzalez, R. C., & Woods, R. E. (2018). Digital image processing, 4th ed. London: Pearson.
  • Heneghan, N., Fu, J., Pritchard, J., Payton, M., & Allen, R. W. (2021). The effect of environmental conditions on the rate of RNA degradation in dried blood stains. Forensic Science International: Genetics, 51, 102456. doi:10.1016/j.fsigen.2020.102456
  • Kim, H. J., Lee, Y. R., Lee, S., Kwon, S., Chun, Y. T., Hyun, S. H., … Kang, H. G. (2022). Discovery of donor age markers from bloodstain by LC-MS/MS using a metabolic approach. International Journal of Legal Medicine, 136(1), 297–308. doi:10.1007/s00414-021-02640-w
  • Kumar, A., & Kumar Singh, R. (2020). Association between different blood groups and blood hemoglobin levels of medical undergraduates: An analytical study. International Journal of Health and Clinical Research, 3(12S), 202–206.
  • Kumar, V., Aulakh, R. S., Gill, J. P. S., & Sharma, A. (2022). Exploring smart phone based colorimetric technology for on-site quantitative determination of adulterant (neutralizer) in milk. Journal of Food Science and Technology, 59(9), 3693–3699. doi:10.1007/s13197-022-05392-6
  • Ma, Y., Li, Y., Ma, K., & Wang, Z. (2018). Optical colorimetric sensor arrays for chemical and biological analysis. Science China Chemistry, 61(6), 643–655. doi:10.1007/s11426-017-9224-3
  • Manasatienkij, C., & Nimnual, A. (2021). Forensic blood stain aging using reverse transcription real-time PCR. Forensic Science International: Reports, 3, 100205. doi:10.1016/j.fsir.2021.100205
  • Marrone, A., La Russa, D., Montesanto, A., Lagani, V., La Russa, M. F., & Pellegrino, D. (2021). Short and long time bloodstains age determination by colorimetric analysis: A pilot study. Molecules, 26(20), 6272. doi:10.3390/molecules26206272
  • Nisoa, M., Wattanasit, K., Tamman, A., Sirisathitkul, Y., & Sirisathitkul, C. (2021). Microwave drying for production of rehydrated foods: A case study of stink bean (Parkia speciosa) seed. Applied Sciences, 11(7), 2918. doi:10.3390/app11072918
  • Nixon, M., Outlaw, F., & Leung, T. S. (2020). Accurate device-independent colorimetric measurements using smartphones. PLoS ONE, 15(3), e0230561. doi:10.1371/journal.pone.0230561
  • Patel, S., Shrivas, K., Sinha, D., Kumar Patle, T., Yadav, S., Thakur, S. S., … Pervez, S. (2022). Smartphone-integrated printed-paper sensor designed for on-site determination of dimethoate pesticide in food samples. Food Chemistry, 383, 132449. doi:10.1016/j.foodchem.2022.132449
  • Pham, N. A., Morrison, A., Schwock, J., Aviel-Ronen, S., Iakovlev, V., Tsao, M. S., … Hedley, D. W. (2007). Quantitative image analysis of immunohistochemical stains using a CMYK color model. Diagnostic Pathology, 2(1), 8. doi:10.1186/1746-1596-2-8
  • Ramalingam, L., & Raghavan, G. (2020). Association between blood groups and blood hemoglobin levels in rural population of Kanchipuram district of Tamil Nadu. National Journal of Physiology, Pharmacy and Pharmacology, 10(6), 495–498. doi:10.5455/njppp.2020.10.04090202020042020
  • Ramirez, M. S., & Santamarina, J. C. (2022). Specific surface area by colorimetry and image analysis. Geotechnical Testing Journal, 45(1), 163–179. doi:10.1520/gtj20210026
  • Santiago, J. B., & Sevilla, F. B. (2022). Smartphone-based digital colorimetric measurement of dimethyl sulfide in wastewater. Microchemical Journal, 172, 106952. doi:10.1016/j.microc.2021.106952
  • Sharma, V., & Kumar, R. (2018). Trends of chemometrics in bloodstain investigations. TrAC –Trends in Analytical Chemistry, 107, 181–195. doi:10.1016/j.trac.2018.08.006
  • Shin, J., Choi, S., Yang, J., S., Song, J., Choi, J., S., & Jung, H. I. (2017). Smart forensic phone: Colorimetric analysis of a bloodstain for age estimation using a smartphone. Sensors and Actuators B: Chemical, 243, 221–225. doi:10.1016/j.snb.2016.11.142
  • Sirisathitkul, C., Ekmataruekul, K., Sirisathitkul, Y., & Noonsuk, W. (2020). Smartphone colorimetry of fine-paste ware in Hindu-Buddhist rituals. European Journal of Science and Theology, 16(3), 179–186.
  • Sirisathitkul, Y., & Kaewareelap, S. (2021). Color analysis of batik fabric by facile smartphone colorimetry. International Journal on Advanced Science, Engineering and Information Technology, 11(1), 84–91. doi:10.18517/ijaseit.11.1.11480
  • Sun, H., Dong, Y., Zhang, P., Meng, Y., Wen, W., Li, N., & Guo, Z. (2017). Accurate age estimation of bloodstains based on visible reflectance spectroscopy and chemometrics methods. IEEE Photonics Journal, 9(1), 1–14. doi:10.1109/JPHOT.2017.2651580
  • Thanakiatkrai, P., Yaodam, A., & Kitpipit, T. (2013). Age estimation of bloodstains using smartphones and digital image analysis. Forensic Science International, 233(1-3), 288–297. doi:10.1016/j.forsciint.2013.09.027
  • Thio, S. K., Bae, S. W., & Park, S. Y. (2022). Lab on a smartphone (LOS): A smartphone-integrated, plasmonic-enhanced optoelectrowetting (OEW) platform for on-chip water quality monitoring through LAMP assays. Sensors and Actuators B: Chemical, 358, 131543. doi:10.1016/j.snb.2022.131543
  • Weber, A. R., & Lednev, I. K. (2020). Crime clock: Analytical studies for approximating time since deposition of bloodstains. Forensic Chemistry, 19, 100248. doi:10.1016/j.forc.2020.100248
  • Weber, A., Wójtowicz, A., & Lednev, I. K. (2021). Post deposition aging of bloodstains probed by steady-state fluorescence spectroscopy. Journal of Photochemistry and Photobiology B: Biology, 221, 112251. doi:10.1016/j.jphotobiol.2021.112251
  • Wu, Z. Y., Zhang, F., Kuang, Z., Fang, F., & Song, Y. Y. (2022). Fast and sensitive colorimetric detection of pigments from beverages by gradient zone electrophoresis on a paper based analytical device. Microchemical Journal, 179, 107499. doi:10.1016/j.microc.2022.107499
  • You, M., Liu, J., Zhang, J., Xv, M., & He, D. A. (2020). Novel chicken meat quality evaluation method based on color card localization and color correction. IEEE Access, 8, 170093–170100. doi:10.1109/ACCESS.2020.2989439
  • Zadora, G., & Menżyk, A. (2018). In the pursuit of the holy grail of forensic science: Spectroscopic studies on the estimation of time since deposition of bloodstains. TrAC –Trends in Analytical Chemistry, 105, 137–165. doi:10.1016/j.trac.2018.04.009
  • Zamora-Garcia, I., Correa-Tome, F. E., Hernandez-Belmonte, U. H., Ayala-Ramirez, V., & Ramirez-Paredes, J. P. (2021). Mobile digital colorimetry for the determination of ammonia in aquaculture applications. Computers and Electronics in Agriculture, 181, 105960. doi:10.1016/j.compag.2020.105960
  • Zhang, F., Li, Y., Li, X., Liu, R., Sang, Y., Wang, X., & Wang, S. (2022). Nanozyme-enabled sensing strategies for determining the total antioxidant capacity of food samples. Food Chemistry, 384, 132412. doi:10.1016/j.foodchem.2022.132412
  • Zheng, S., Li, H., Fang, T., Bo, G., Yuan, D., & Ma, J. (2022). Towards citizen science. On-site detection of nitrite and ammonium using a smartphone and social media software. Science of the Total Environment, 815, 152613. doi:10.1016/j.scitotenv.2021.152613