911
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Characterization of diesel-degrading, hydrolytic enzymes-producing Streptomyces spp. isolated from fuel-oil polluted soils

ORCID Icon, , , , &
Pages 248-255 | Received 02 Dec 2022, Accepted 23 Mar 2023, Published online: 09 Apr 2023

References

  • Alawawdeh, M. T. (2006). Enzymatic, antibiotic and degradation activities of hydrocarbon-polluted soil streptomycetes (M.Sc. thesis). Jordan University of Science and Technology, Jordan.
  • Aly, M. M., Tork, S., Al-Garni, S. M., & Nawar, L. (2012). Production of lipase from genetically improved Streptomyces exfoliates LP10 isolated from oil-contaminated soil. African Journal of Microbiology Research, 6, 1125–1137.
  • Ambaye, T. G., Chebbi, A., Formicola, F. C., Prasad, S., Gomez, F. H., Franzetti, A., & Vaccari, M. (2022). Remediation of soil polluted with petroleum hydrocarbons, and their reuse for agriculture: Recent progress, challenges, and perspectives. Chemosphere, 293(3), 133572. doi:10.1016/j.chemosphere.2022.133572
  • Arpigny, J. L., & Jaeger, K. E. (1999). Bacterial lipolytic enzymes: Classification and properties. Biochemical Journal. 343, 177–183.
  • Auffret, M. D., Yergeau, E., Labbé, D., Fayolle-Guichard, F., & Greer, C. W. (2015). Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. Applied Microbiology and Biotechnology, 99(5), 2419–2430. doi:10.1007/s00253-014-6159-8
  • Cabral, L., Giovanella, P., Pellizzer, E. P., Teramoto, E. H., Kiang, C. H., & Sette, L. D. (2022). Microbial communities in petroleum-contaminated sites: Structure and metabolisms. Chemosphere, 286, 131752. doi:10.1016/j.chemosphere.2021.131752
  • Chaudhary, P., Sharma, R., Singh, S. B., & Nain, L. (2011). Bioremediation of PAH by Streptomyces sp. Bulletin of Environmental Contamination and Toxicology, 86(3), 268–271. doi:10.1007/s00128-011-0211-5
  • Dhanraj, N. D., Hatha, A. A. M., & Jisha, M. S. (2022). Biodegradation of petroleum based and bio-based plastics: Approaches to increase the rate of biodegradation. Archives of Microbiology, 204(5), 258–258.
  • Elnahas, M. O., Hou, L., Wall, J. D., & Majumder, E. L.-W. (2021). Bioremediation potential of Streptomyces sp. MOE6 for toxic metals and oil. Polysaccharides, 2, 47–68. doi:10.3390/polysaccharides2010004
  • Ferradji, F. Z., Mnif, S., Badis, A., Rebbani, S., Fodil, D., Eddouaouda, K., & Sayadi, S. (2014). Naphthalene and crude oil degradation by biosurfactant producing Streptomyces spp. isolated from Mitidja plain soil (North of Algeria). International Biodeterioration & Biodegradation, 86, 300–308.
  • Gulati, R., Isar, J., Kumar, V., Parsad, A. K., Parmar, V., Saxena, S., & Rajendra, K. (2005). Production of a novel alkaline lipase by Fusarium globulosum using Neem oil, and its applications. Pure and Applied Chemistry. 77(1), 251–262.
  • Gunstone, F. D. (1999). Enzymes as biocatalysts in the modification of natural lipids. Journal of the Science of Food and Agriculture. 79(12), 1535–1549.
  • Ho, M. T., Li, M. S. M., McDowell, T., MacDonald, J., & Yuan, Z. (2020). Characterization and genomic analysis of a diesel-degrading bacterium, Acinetobacter calcoaceticus CA16, isolated from Canadian soil. BMC Biotechnol, 20(39), 39. doi:10.1186/s12896-020-00632-z
  • Jabbar, N. M., Alardhi, S. M., Mohammed, A. K., Salih, I. K., & Albayati, T. M. (2022). Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: A review. Environmental Nanotechnology, Monitoring & Management, 18, 100694. doi:10.1016/j.enmm.2022.100694
  • Jacobs, C. J., Prior, B. A., & Dekock, M. J. (1983). A Rapid screening method to detect ethanol production by microorganisms. Journal of Microbiological Methods. 1, 339–342.
  • Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13(4), 390–397. doi:10.1016/s0958-1669(02)00341-5
  • Jaradat, Z., Dawagreh, A., Ababneh, Q., & Saadoun, I. (2008). Influence of culture conditions on cellulase production by Streptomyces sp. (strain J2). Jordan Journal of Biological Sciences, 1(4), 141–146.
  • Kalia, A., Sharma, S., Semor, N., Babele, P. K., Sagar, S., Bhatia, R. K., & Walia, A. (2022). Recent advancements in hydrocarbon bioremediation and future challenges: A review.Biotech, 12(6), 1–16. doi:10.1007/s13205-022-03199-y
  • Kehinde, F. O., & Isaac, S. A. (2016). Effectiveness of augmented consortia of Bacillus coagulans, Citrobacter koseri and Serratia ficaria in the degradation of diesel-polluted soil supplemented with pig dung. African Journal of Microbiology Research, 10(39), 1637–1644.
  • Khalifa, A. A., Khan, E., & Akhtar, M. S. (2023). Phytoremediation of indoor formaldehyde by plants and plant material. International Journal of Phytoremediation, 25(4), 493–504. doi:10.1080/15226514.2022.2090499
  • Liu, Q., Tang, J., Bai, Z., Hecker, M., & Giesy, J. P. (2015). Distribution of petroleum degrading genes and factor analysis of petroleum contaminated soil from the Dagang Oilfield, China. Scientific Reports, 5, 1–12. doi:10.1038/srep11068
  • Lv, Y., Bao, J., Dang, Y., Liu, D., Liu, Li, T., Li, S., … Zhu, L. (2023). Biochar aerogel enhanced remediation performances for heavy oil-contaminated soil through biostimulation strategy. Journal of Hazardous Materials, 443(Pt B), 130209. doi:10.1016/j.jhazmat.2022.130209
  • Mohapatra, B., Dhamale, T., Saha, B. K., & Phale, P. S. (2022). Microbial degradation of aromatic pollutants: Metabolic routes, pathway diversity, and strategies for bioremediation. In S. Das, H. Ranjan Dash (Eds.), Microbial biodegradation and bioremediation (2nd ed., pp. 365–394). Amsterdam, Netherlands; Oxford, UK, Cambridge, MA, USA: Elsevier.
  • Peng, J., Zhang, Y., Su, J., Qiu, Q., Jia, Z., & Zhu, Y.-G. (2013). Bacterial communities predominant in the degradation of 13C4-4,5,9,10-pyrene during composting. Bioresource Technology, 143, 608–614. doi:10.1016/j.biortech.2013.06.039
  • Poonam, L., Prasad, A. K., Chandrani, M., Gaurav, M., Meghwanshi, G. K., Jesper, W., … Parmar, V. S. (2005). Selective transacylation reactions on 4-aryl-3-4- dihydropyrimidin-2-ones and nucleosides mediated by novel lipases. Pure and Applied Chemistry. 77(1), 237–243. doi:10.1351/pac200577010237
  • Rakesh, N., Saini, D., Gupta, V., Neelam, D., & Rahi, R. (2023). Role of microbes in bioremediation of hydrocarbon associated pollution. Sustainability, Agri, Food and Environmental Research, 11, 1–13. doi:10.7770/safer-V11N1-art2395
  • Saadoun, I. (2002). Isolation and characterization of bacteria from crude petroleum oil contaminated soil and their potential to degrade diesel fuel. Journal of Basic Microbiology. 6, 420–428. doi:10.1002/1521-4028(200212)42:6<420::AID-JOBM420>3.0.CO;2-W
  • Saadoun, I. (2004). Recovery of Pseudomonas spp. From chronically fuel-polluted soils in Jordan and the study of their capability to degrade short chain alkanes. World Journal of Microbiology and Biotechnology. 20, 43–46. doi:10.1023/B:WIBI.0000013290.18979.21
  • Saadoun, I., & Alawawdeh, M. (2019). Analysis for Streptomyces spp. recovered from oil refinery soils to grow on diesel. Malaysian Journal of Microbiology, 15(6), 480–487.
  • Saadoun, I., Alawawdeh, M., Jaradat, Z., & Ababneh, Q. (2008). Growth of hydrocarbon-polluted soil Streptomyces spp. on diesel and their analysis for the presence of alkane hydroxylase gene (alkB) by PCR. World Journal of Microbiology and Biotechnology, 24, 2191–2198. doi:10.1007/s11274-008-9729-z
  • Saadoun, I., Alawawdeh, M., Jaradat, Z., & Ababneh, Q. (2020). Analysis of alkane hydroxylase gene (alkB) in Streptomyces spp. isolated from hydrocarbon-polluted soils. Jordan Journal of Biological Sciences, 13(3), 731–734.
  • Saadoun, I., Al-Omari, R., Jaradat, Z., & Ababneh, Q. (2009). Influence of culture conditions of Streptomyces sp. (strain S242) on chitinase production. Polish Journal of Microbiology, 58(4), 343–349.
  • Saadoun, I., Ananbeh, H., Ababneh, Q., & Jaradat, Z. (2017). Comparative distribution of soil Streptomyces flora in different Jordanian habitats and their enzymatic and antibiotic activities. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(2), 1285–1297.
  • Saadoun, I., Dawagreh, A., Jaradat, Z., & Ababneh, Q. (2013). Influence of culture conditions on pectinase production by Streptomyces sp. (strain J9). International Journal of Life Science and Medical Research, 3(4), 148–154. doi:10.5963/LSMR0304002
  • Saadoun, I., Rawashdeh, R., Dayeh, T., Ababneh, Q., & Mahasneh, A. (2007). Isolation, characterization, and screening for fiber hydrolytic enzymes-producing streptomycetes of Jordanian forest soils. Biotechnology, 6(1), 120–128. doi:10.3923/biotech.2007.120.128
  • Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization and application of lipases. Biotechnology Advances, 19(8), 627–662. doi:10.1016/s0734-9750(01)00086-6
  • Shatta, A. M., El-Hamahmy, A. F., Ahmed, F. H., Ibrahim, M. M. K., & Arafa, M. A. I. (1999). The influence of certain nutritional and environmental factors on the production of amylase enzyme by Streptomyces aureofaciens 77. Journal of Islamic Academy of Sciences, 3, 134–138.
  • Shepherdson, E. M., Baglio, C. R., & Elliot, M. A. (2023). Streptomyces behavior and competition in the natural environment. Current Opinion in Microbiology, 71, 102257. doi:10.1016/j.mib.2022.102257
  • Shirling, E. B., & Gottlieb, D. (1966). Methods for characterization of streptomycetes species. International Journal of Systematic Bacteriology, 16, 313–340. doi:10.1099/00207713-16-3-313
  • Sivakumar, J., Sundaram, C. S., Krishnasamy, L., & Rao, U. S. (2019). Relative boremediation of used engine oil contaminated soil from an industrialised area by various microbes. Research Journal of Pharmacy and Technology, 12(1), 331–338. doi:10.5958/0974-360X.2019.00060.X
  • Song, X., Wu, X., Song, X., Shi, C., & Zhang, Z. (2021). Sorption and desorption of petroleum hydrocarbons on biodegradable and non-degradable microplastics. Chemosphere, 273, 128553. doi:10.1016/j.chemosphere.2020
  • Soumeya, S., Allaoueddine, B., & Hocine, A. K. (2022). Biodegradation of used motor oil by Streptomyces ginkgonis KM-1–2, isolated from soil polluted by waste oils in the region of Azzaba (Skikda-Algeria). Journal of Biotechnology, 349, 1–11. doi:10.1016/j.jbiotec.2022.03.006
  • Sui, X., Wang, X., Li, Y., & Ji, H. (2021). Remediation of petroleum-contaminated soils with microbial and microbial combined methods: Advances, mechanisms, and challenges. Sustainability, 13(16), 9267. doi:10.3390/su13169267
  • Sukumar, S., & Nirmala, P. (2016). Screening of diesel oil degrading bacteria from petroleum hydrocarbon contaminated soil. International Journal of Advanced Research in Biological Sciences, 3(8), 18–22.
  • Xue, Y., Chen, L., Xiang, L., Zhou, Y., & Wang, T. (2023). Experimental investigation on electromagnetic induction thermal desorption for remediation of petroleum hydrocarbons contaminated soil. Journal of Environmental Management, 328, 117200–117209. doi:10.1016/j.jenvman.2022.117200