690
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Sorption treatment of water from chromium using biochar material

ORCID Icon, ORCID Icon, &
Pages 299-306 | Received 23 Jan 2023, Accepted 23 Apr 2023, Published online: 10 May 2023

References

  • Abdollahi, R., Goodarzi, V., & Baghersad, M. H. (2021). Introducing a new co-polymeric adsorbent with fast sorption rate and high sorption capacity in removal of heavy metal ions: A thermodynamic and kinetic study. Scientia Iranica, 28(3), 1436–1451. doi:10.24200/sci.2020.54302.3691
  • Ahmed, S. F., Mofijur, M., Ahmed, B., Mehnaz, T., Mehejabin, F., Maliat, D., … Shafiullah, G. M. (2022). Nanomaterials as a sustainable choice for treating wastewater. Environmental Research, 214(3), 113807. doi:10.1016/j.envres.2022.113807
  • Babenko, D. A., Pashkevich, M. A., & Alekseenko, A. V. (2020). Water quality management at the Tailings Storage Facility of the Gaisky Mining and Processing Plant. Rocznik Ochrona Srodowiska, 22(1), 214–225.
  • Beloglazov, I. I., Sabinin, D. S., & Nikolaev, M. (2022). Modeling the disintegration process for ball mills using dem. MIAB. Mining Informational and Analytical Bulletin, (6-2), 268–282. [In Russ]. doi:10.25018/0236_1493_2022_62_0_268
  • Caglar, B., Afsin, B., Tabak, A., & Eren, E. (2009). Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chemical Engineering Journal, 149(1-3), 242–248. and other doi:10.1016/j.cej.2008.10.028
  • Carbonaro, R. F., Gray, B. N., Whitehead, C. F., & Stone, A. T. (2008). Carboxylate-containing chelating agent interactions with amorphous chromium hydroxide: Adsorption and dissolution. Geochimica Et Cosmochimica Acta, 72(13), 3241–3257. doi:10.1016/j.gca.2008.04.010
  • Chen, W., Meng, J., Han, X., Lan, Y., & Zhang, W. (2019). Past, present, and future of biochar. Biochar, 1(1), 75–87. and other doi:10.1007/s42773-019-00008-3
  • Cheremisina, E., Cheremisina, O., Ponomareva, M., Bolotov, V., & Fedorov, A. (2021). Kinetic features of the hydrogen sulfide sorption on the ferro-manganese material. Metals, 11(1), 90. doi:10.3390/met11010090
  • Cheremisina, O. V., Cheremisina, E., Ponomareva, M. A., & Fedorov, A. T. (2020). Sorption of rare earth coordination compounds. Journal of Mining Institute, 244, 474–481. doi:10.31897/pmi.2020.4.10
  • Cheremisina, O. V., Ponomareva, M. A., & Bolotov, V. A. (2019). Sorption purification of process gases metallurgical production from sulphur-containing components. Vestnik YurGU, 19(2), 71–78. doi:10.14529/met190208
  • Cheremisina, O. V., Schenk, J., Cheremisina, E. A., & Ponomareva, M. A, (2019). Thermodynamic model of ion-exchange process as exemplified by cerium sorption from multisalt solutions. Journal of Mining Institute, 237(3), 307–316. and other doi:10.31897/pmi.2019.3.307
  • Chukaeva, M. A., Matveeva, V. A., & Sverchkov, I. P. (2022). Complex processing of high-carbon ash and slag waste. Journal of Mining Institute, 253(1), 97–104. doi:10.31897/PMI.2022.5
  • Dubovikov, O. A., Beloglazov, I. I., & Alekseev, A. A. (2022). Specific features of the use of pulverized coal fuel in combined chemical processing. Obogashchenie Rud, (6), 32–38. doi:10.17580/or.2022.06.06
  • Fenti, A., Chianese, S., Iovino, P., Musmarra, D., & Salvestrini, S. (2020). Cr(VI) sorption from aqueous solution: A review. Applied Sciences, 10(18), 6477. doi:10.3390/app10186477
  • Fernandes, S., Romão, I. S., Abreu, C. M. R., Quina, M. J., & Gando-Ferreira, L. M. (2012). Selective separation of Cr(III) and Fe(III) from liquid effluents using a chelating resin. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 66(9), 1968–1976. doi:10.2166/wst.2012.406
  • Fialkovsky, I. S., Litvinova, T. E., & Lutsky, D. S. (2021). Determination of the parameters of thermodynamic stability constants of bromide complexes of rare earth metals for modeling the optimal regimes of hydrometallurgical extraction. Arab Journal of Basic and Applied Sciences, 29(1), 1–9.
  • Foo, K. Y., & Hameed, B. H. (2010). Insights into modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. pp. doi:10.1016/j.cej.2009.09.013
  • García-Reyes, R. B., Rangel-Mendez, J. R., & Alfaro, C. (2009). Chromium (III) uptake by agro-waste biosorbents: Chemical characterization, sorption-desorption studies, and mechanism. Journal of Hazardous Materials, 170, 845–854. doi:10.1016/j.jhazmat.2009.05.046
  • GracePavithra, K., Jaikumar, V., Kumar, P. S., & SundarRajan, P. (2019). A review on cleaner strategies for chromium industrial wastewater: present research and future perspective. Journal of Cleaner Production, 228(8), 580–593. doi:10.1016/j.jclepro.2019.04.117
  • Gürü, M., Venedik, D., & Murathan, A. (2008). Removal of trivalent chromium from water using low-cost natural diatomite. Journal of Hazardous Materials, 160(2-3), 318–323. doi:10.1016/j.jhazmat.2008.03.002
  • Hu, B., Ai, Y., Jin, J., Hayat, T., Alsaedi, A., Zhuang, L., & Wang, X. (2020). Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar, 2(1), 47–64. and other doi:10.1007/s42773-020-00044-4
  • Kaźmierczak, B., Molenda, J., & Swat, M. (2021). The adsorption of chromium (III) ions from water solutions on biocarbons obtained from plant waste. Environmental Technology & Innovation, 23, 101737. doi:10.1016/j.eti.2021.101737
  • Koksal, E., Afsin, B., Tabak, A., & Caglar, B. (2020). Butylamine-resadiye bentonite composite characterization. Spectroscopy Letters, 53(10), 745–750. and other doi:10.1080/00387010.2020.1832530
  • Kudinova, A. A., Poltoratckaya, M. E., Gabdulkhakov, R. R., Litvinova, T. E., & Rudko, V. A. (2022). Parameters influence establishment of the petroleum coke genesis on the structure and properties of a highly porous carbon material obtained by activation of KOH. Journal of Porous Materials, 29(5), 1599–1616. doi:10.1007/s10934-022-01287-1
  • Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 3(3), 255–281. doi:10.1007/s42773-021-00101-6
  • Lutskiy, D. S., & Ignatovich, A. S. (2021). Study on hydrometallurgical recovery of copper and rhenium in processing of substandard copper concentrates. Journal of Mining Institute, 251(3), 723–729. doi:10.31897/PMI.2021.5.11
  • Mikhaylov, V. I., Maslennikova, T. P., Krivoshapkina, E. F., Tropnikov, E. M., & Krivoshapkin, P. V. (2018). Express Al/Fe oxide–oxyhydroxide sorbent systems for Cr(VI) removal from aqueous solutions. Chemical Engineering Journal, 350, 344–355. doi:10.1016/j.cej.2018.05.023
  • Nasiri, A., Jamshidi-Zanjani, A., & Darban, A. K. (2020). Application of enhanced electrokinetic approach to remediate Cr-contaminated soil: Effect of chelating agents and permeable reactive barrier. Environmental Pollution, 266(1), 115197. doi:10.1016/j.envpol.2020.115197
  • Pashayan, A. A., Shetinskaya, O. S., & Zerkalenkova, M. V. (2018). Chemical, sorption and chemisorption treatment of wastewater from chromium compounds. Innovative Ways to Address Current Problems of Environmental Management and Protection, 173–179.
  • Qiu, M., Liu, L., Ling, Q., Cai, Y., Yu, S., Wang, S., … Wang, X. (2022). Biochar for the removal of contaminants from soil and water: A review. Biochar, 4(1), 1–25. doi:10.1007/s42773-022-00146-1
  • Rajapaksha, A. U., Selvasembian, R., Ashiq, A., Gunarathne, V., Ekanayake, A., Perera, V. O., … Ok, Y. S. (2022). A systematic review on adsorptive removal of hexavalent chromium from aqueous solutions: Recent advances. Science of the Total Environment, 809(4), 152055–152055. and other Vol. doi:10.1016/j.scitotenv.2021.152055
  • Saravanan, A., & Senthil Kumar, P. (2022). Biochar derived carbonaceous material for various environmental applications: Systematic review. Environmental Research, 214(1), 113857. doi:10.1016/j.envres.2022.113857
  • Sawalha, M. F., Peralta-Videa, J. R., Saupe, G. B., Dokken, K. M., & Gardea-Torresdey, J. L. (2007). Using FTIR to corroborate the identity of functional groups involved in the binding of Cd and Cr to saltbush (Atriplex canescens) biomass. Chemosphere, 66(8), 1424–1430. and other doi:10.1016/j.chemosphere.2006.09.028
  • Setshedi, K. Z., Bhaumik, M., Onyango, M. S., & Maity, A. (2015). High-perfomance towards Cr(VI) removal using multi-active sites of polypyrrole-graphene oxide nanocomposites: Batch and column studies. Chemical Engineering Journal, 262, 921–931. doi:10.1016/j.cej.2014.10.034
  • Shestakov, A. K., Petrov, P. A., & Nikolaev, M. (2022). Automatic system for detecting visible outliers in electrolysis shop of aluminum plant based on technical vision and a neural network. Metallurgist, 66(9–10), 105–112. [In Russ]. doi:10.52351/00260827_2022_10_105
  • Thangagiri, B., Sakthivel, A., Jeyasubramanian, K., Seenivasan, S., Dhaveethu Raja, J., & Yun, K. (2022). Removal of hexavalent chromium by biochar derived from Azadirachta indica leaves: Batch and column studies. Chemosphere, 286(Pt 1), 131598. doi:10.1016/j.chemosphere.2021.131598
  • Uddin, M. J., Jeong, Y. K., & Lee, W. (2021). Microbial fuel cells for bioelectricity generation through reduction of hexavalent chromium in wastewater: A review. International Journal of Hydrogen Energy, 46(20), 11458–11481. doi:10.1016/j.ijhydene.2020.06.134
  • Wan, J., Liu, F., Wang, G., Liang, W., Peng, C., Zhang, W., … Yang, J. (2021). Exploring different mechanisms of biochars in removing hexavalent chromium: Sorption, reduction and electron shuttle. Bioresource Technology, 337, 125382. and other doi:10.1016/j.biortech.2021.125382
  • Wołowicz, A., & Wawrzkiewicz, M. (2021). Screening of ion exchange resins for hazardous Ni(II) removal from aqueous solutions: Kinetic and equilibrium batch adsorption method. Processes, 9(2), 285. doi:10.3390/pr9020285
  • Yi, Y., Wang, X., Ma, J., & Ning, P. (2020). An efficient Egeria najas-derived biochar supported nZVI composite for Cr(VI) removal: Characterization and mechanism investigation based on visual MINTEQ model. Environmental Research, 189, 109912. doi:10.1016/j.envres.2020.109912