492
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Motion of micropolar and Walters-B nanofluids towards a stretching sheet with the significance of heat generation, thermal radiation and Soret–Dufour mechanisms

ORCID Icon, &
Pages 429-439 | Received 22 Nov 2022, Accepted 05 Jun 2023, Published online: 06 Jul 2023

References

  • Abbas, A., Begum Jeelani, M., Alnahdi, A. S., & Ilyas, A. (2022a). MHD Williamson nanofluid fluid flow and heat transfer past a non-linear stretching sheet implanted in a porous medium: Effects of heat generation and viscous dissipation. Processes, 10(6), 1221. doi:10.3390/pr10061221
  • Abbas, A., Begum Jeelani, M., & Hussain Alharthi, N. (2022b). Magnetohydrodynamic effects on third-grade fluid flow and heat transfer with Darcy–Forchheimer law over an inclined exponentially stretching sheet embedded in a porous medium. Magnetochemistry, 8(6), 61. doi:10.3390/magnetochemistry8060061
  • Alam, M. S., Rahman, M. M., & Sattar, M. A. (2009). Transient magnetohydrodynamic free convective heat and mass transfer flow with thermophoresis past a radiate inclined permeable plate dependent viscosity. Nonlinear Analysis: Modelling and Control, 14(1), 3–20. doi:10.15388/NA.2009.14.1.14525 [InsertedFromOnline
  • Alao, F. I., Fagbade, A. I., & Falodun, B. O. (2016). Effects of thermal radiation, Soret and Dufour on an unsteady heat and mass transfer flow of a chemically reacting fluid past a semi-infinite vertical plate with viscous dissipation. Journal of the Nigerian Mathematical Society, 35(1), 142–158. doi:10.1016/j.jnnms.2016.01.002
  • Aruna, G., Varma, S. V., & Raju, R. S. (2015). Combined influence of Soret and Dufour effect on unsteady hydromagnetic mixed convective flow in an accelerated vertical wavy plate through a porous medium. The International Journal of Advances in Applied Mathematics and Mechanics, 3(1), 122–134.
  • Ashraf Bilal, M., Hayat, T., & Alsulami, H. (2016). Mixed convection Falkner-Skan wedge flow of an Oldroyd-B fluid in presence of thermal radiation. Journal of Applied Fluid Mechanics, 9(6), 1753–1762. doi:10.18869/acadpub.jafm.68.235.24323
  • Ayegbusi, F. D., Onwubuoya, C., & Falodun, B. O. (2020). Unsteady problem of magnetohydrodynamic heat plus mass transfer convective flow over a moveable plate with effects of thermophoresis and thermal radiation. Heat Transfer, 49(6), 3593–3612. doi:10.1002/htj.21790
  • Bilal, M., Saeed, A., Gul, T., Kumam, W., Safyan, M., & Kumam, P. (2022). Parametric simulation of micropolar fluid with thermal radiation across a porous stretching surface. Scientific Report, 12, 2542. doi:10.1038/s41598-022-06458-3
  • Bilal, J., Muhammad, S. A., Amer, R., & Muhammad, I. (2020). MHD Maxwell flow modeled by fractional derivatives with chemical reaction and thermal radiation. Chinese Journal of Physics, 67, 512–533. doi:10.1016/j.cjph.2020.08.012
  • Canuto, C., Hussaini, M. Y., Quarteroni, A., & Zang, T. A. (1998). Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin.
  • Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Salah, F. (2018). Impact of thermal radiation on electrical MHD flow of nanofluid over a nonlinearly stretching sheet with variable thickness. Alexandria Engineering Journal, 57(3), 2187–2197. doi:10.1016/j.aej.2017.07.007
  • Fagbade, A. I., Falodun, B. O., & Omowaye, A. J. (2018). MHD natural convection flow of viscoelastic fluid over an accelerating permeable surface with thermal radiation and heat source or sink: Spectral homotopy analysis approach. Ain Shams Engineering Journal, 9(4), 1029–1041. doi:10.1016/j.asej.2016.04.021
  • Hady, F. M. (1996). Short communication on the solution of heat transfer to micropolar fluid from a non-isothermal stretching sheet with injection. International Journal of Numerical Methods for Heat & Fluid Flow, 6(6), 99–104. doi:10.1108/09615539610131299
  • Hayat, T., Abbas, Z., & Javed, T. (2008). Mixed convection flow of a micropolar fluid over a non-linear stretching sheet. Physics Letters A, 372(5), 637–647. doi:10.1016/j.physleta.2007.08.006
  • Hayat, T., Javed, T., & Abbas, Z. (2009). MHD flow of a micropolar fluid near a stagnation-point towards a non-linear stretching surface. Nonlinear Analysis: Real World Applications, 10(3), 1514–1526. doi:10.1016/j.nonrwa.2008.01.019
  • Irfan, M., Rafiq, K., Anwar, M. S., Khan, M., Khan, W. A., & Iqbal, K. (2021). Evaluating the performance of new mass flux theory on Carreau nanofluid using the thermal aspects of convective heat transport. Pramana, 95(4), 203. doi:10.1007/s12043-021-02217-7
  • Ishak, A., Nazar, R., & Pop, I. (2008). Heat transfer over a stretching surface with variable surface heat flux in micropolar fluids. Physics Letters A, 372(5), 559–561. doi:10.1016/j.physleta.2007.08.003
  • Javaherdeh, K., Mirzaei Nejad, M., & Moslemi, M. (2015). Natural convection heat and mass transfer in MHD fluid flow past a moving vertical plate with variable surface temperature and concentration in a porous medium. International Journal of Engineering and Technology, 18(3), 423–431. doi:10.1016/j.jestch.2015.03.001
  • Jayachandra, M., Babu, S. N., & Saleem, S. Free convective MHD Cattaneo-Christov flow over three different geometries with thermophoresis and Brownian motion. National University of Computer and Engineering Sciences, Pakistan, February 3, 2017.
  • Mehmood, A., Ali, A., & Shah, T. (2008). Heat transfer analysis of unsteady boundary layer flow by homotopy analysis method. Commun Nonlinear Science and Numerical Simulation, 13(5), 902–912. doi:10.1016/j.cnsns.2006.09.008
  • Motsa, S. S., Sibanda, P., & Shateyi, S. (2010). A new spectral-homotopy analysis method for solving a nonlinear second order BVP. Communications in Nonlinear Science and Numerical Simulation, 15(9), 2293–2302. doi:10.1016/j.cnsns.2009.09.019
  • Omowaye, A. J., Fagbade, A. I., & Ajayi, A. O. (2015). Dufour and Soret effects on steady MHD convective flow of a fluid in a porous medium with temperature dependent viscosity: Homotopy analysis approach. Journal of the Nigerian Mathematical Society, 34(3), 343–360. doi:10.1016/j.jnnms.2015.08.001
  • Pal, D., & Mondal, H. (2011). Effects of Soret Dufour, chemical reaction and thermal radiation on MHD non-Darcy unsteady mixed convective heat and mass transfers over a stretching sheet. Communications in Nonlinear Science and Numerical Simulation, 16(4), 1942–1958. doi:10.1016/j.cnsns.2010.08.033
  • Ramana Reddy, J. V., Anantha Kumar, K., Sugunamma, V., & Sandeep, N. (2018). Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study. Alexandria Engineering Journal, 57(3), 1829–1838. doi:10.1016/j.aej.2017.03.008
  • Sajid, M., Abbas, Z., & Hayat, T. (2009). Homotopy analysis for boundary layer flow of a micropolar fluid through a porous channel. Applied Mathematical Modelling, 33(11), 4120–4125. doi:10.1016/j.apm.2009.02.006
  • Sajid, M., Ali, N., & Hayat, T. (2009). On exact solutions for thin film flows of a micropolar fluid. Communications in Nonlinear Science and Numerical Simulation, 14(2), 451–461. doi:10.1016/j.cnsns.2007.09.003
  • Salawu, S. O., & Dada, M. S. (2016). Radiative heat transfer of variable viscosity and thermal conductivity effects on inclined magnetic field with dissipation in a non-Darcy medium. Journal of the Nigerian Mathematical Society, 35(1), 93–106. doi:10.1016/j.jnnms.2015.12.001
  • Seini, Y. I., & Makinde, O. D. Hydromagnetic flow with dufour and soret effects past a vertical plate embedded in porous media mathematical theory and modeling. www.iiste.org. ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol. 3, No. 12, 2013 47.
  • Sharma, B. K., Yadav, K., Mishra, N. K., & Chaudhary, R. C. (2012). Soret and Dufour effects on unsteady MHD mixed convection flow past a radiative vertical porous plate embedded in a porous medium with chemical reaction. Applied Mathematics, 03(07), 717–723. doi:10.4236/am.2012.37105
  • Shoaib Anwar, M., & Rasheed, A. (2017). Heat transfer at microscopic level in a MHD fractional inertial flow confined between non-isothermal boundaries. The European Physical Journal Plus, 132(7), 305. doi:10.1140/epjp/i2017-11579-4
  • Tella, H., Vijaykumar, P., & Naidu, A. (2015). Homotopy analysis to Soret and Dufour effects on heat and mass transfer chemically reacting fluid past a moving vertical plate with viscous dissipation. IOSR Journal of Mathematics, 11(16), 106–121.
  • Trefethen, L. N. (2000). Spectral Methods in MATLAB, SIAM.
  • Uwanta, I. J., & Usman, H. (2014). On the influence of Soret and Dufour effects on MHD free convective heat and mass transfer flow over a vertical channel with constant suction and viscous dissipation. International Scholarly Research Notices, 2014, 1–11. doi:10.1155/2014/639159
  • Vijaya Lakshmi, R., Sarojamma, G., Sreelakshmi, K., & Sandhya, G. (2017). Unsteady flow of a cassion fluid through a vertical channel with wallsof expansion and contraction. International Journal of Research InScience & Engineering, Special Issue NCRAPAM, 186–197.
  • Walters, K. (1962). Non-Newtonian effects in some elastico-viscous liquids whose behaviour at small rates of shear is characterized by a general linear equations of state. The Quarterly Journal of Mechanics and Applied Mathematics, 15(1), 63–76. doi:10.1093/qjmam/15.1.63