762
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Emerging pivotal role of carbon nanomaterials in abiotic stress tolerance in plants: a mini review

&
Pages 463-471 | Received 13 Apr 2023, Accepted 03 Aug 2023, Published online: 17 Aug 2023

References

  • Abdulmajeed, A. M., Alnusairi, G. S., Alharbi, M. H., Almushhin, A., Hasan, M. M., & Soliman, M. H. (2021). Alleviation of copper phytotoxicity by acetylsalicylic acid and nitric oxide application in mung bean involves the up-regulation of antioxidants, osmolytes and glyoxalase system. Journal of Plant Interactions, 16(1), 201–212. doi:10.1080/17429145.2021.1922771
  • Ahmed, S. R., Anwar, Z., Shahbaz, U., Skalicky, M., Ijaz, A., Tariq, M. S., … Mujtaba, H. (2023). Potential role of silicon in plants against biotic and abiotic stresses. Silicon, 15(7), 3283–3303. doi:10.1007/s12633-022-02254-w
  • Akhtar, M. J., Ahamed, M., Alhadlaq, H. A., & Alshamsan, A. (2017). Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochimica et Biophysica Acta. General Subjects, 1861(4), 802–813. doi:10.1016/j.bbagen.2017.01.018
  • Alabdallah, N. M., Hasan, M. M., Hammami, I., Alghamdi, A. I., Alshehri, D., & Alatawi, H. A. (2021). Green synthesized metal oxide nanoparticles mediate growth regulation and physiology of crop plants under drought stress. Plants, 10(8), 1730. doi:10.3390/plants10081730
  • Alabdallah, N. M., Hasan, M. M., Salih, A. M., Roushdy, S. S., Al-Shammari, A. S., Alsanie, S. I., & El-Zaidy, M. (2021). Silver nanoparticles improve growth and protect against oxidative damage in eggplant seedlings under drought stress. Plant, Soil and Environment, 67(11), 617–624. doi:10.17221/323/2021-PSE
  • Alluqmani, S. M., & Alabdallah, N. M. (2022). The effect of thermally heated carbon nanoparticles of oil fly ash on tomato (Solanum lycopersicum L.) Under Salt Stress. Journal of Soil Science and Plant Nutrition, 22, 1–10.
  • Andrade, K., Guerra, S., Debut, A., Andrade, K., Guerra, S., & Debut, A. (2014). Fullerene-based symmetry in Hibiscus rosa-sinensis pollen. PloS One, 9(7), e102123. doi:10.1371/journal.pone.0102123
  • Bai, X., Purcell-Milton, F., & Gun’ko, Y. (2019). Optical properties, synthesis, and potential applications of Cu-based ternary or quaternary anisotropic quantum dots, polytypic nanocrystals, and core/shell heterostructures. Nanomaterials, 9(1), 85. doi:10.3390/nano9010085
  • Baptista, F. R., Belhout, S. A., Giordani, S., & Quinn, S. J. (2015). Recent developments in carbon nanomaterial sensors. Chemical Society Reviews, 44(13), 4433–4453. doi:10.1039/c4cs00379a
  • Baz, H., Creech, M., Chen, J., Gong, H., Bradford, K., & Huo, H. (2020). Water-soluble carbon nanoparticles improve seed germination and post-germination growth of lettuce under salinity stress. Agronomy, 10(8), 1192. doi:10.3390/agronomy10081192
  • Borišev, M., Borišev, I., Župunski, M., Arsenov, D., Pajević, S., Ćurčić, Ž., Vasin, J., & Djordjevic, A. (2016). Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles. PLoS One, 11(11), e0166248. doi:10.1371/journal.pone.0166248
  • Buseck, P. R., Tsipursky, S. J., & Hettich, R. (1992). Fullerenes from the geological environment. Science (New York, NY), 257(5067), 215–217. doi:10.1126/science.257.5067.215
  • Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports (Amsterdam, Netherlands), 15, 11–23. doi:10.1016/j.btre.2017.03.002
  • Gohari, G., Panahirad, S., Sepehri, N., Akbari, A., Zahedi, S. M., Jafari, H., … Fotopoulos, V. (2021). Enhanced tolerance to salinity stress in grapevine plants through application of carbon quantum dots functionalized by proline. Environmental Science and Pollution Research International, 28(31), 42877–42890. doi:10.1007/s11356-021-13794-w
  • Gohari, G., Safai, F., Panahirad, S., Akbari, A., Rasouli, F., Dadpour, M. R., & Fotopoulos, V. (2020). Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in Ocimum basilicum L. in a concentration-dependent manner. Chemosphere, 249, 126171. doi:10.1016/j.chemosphere.2020.126171
  • González-García, Y., López-Vargas, E. R., Pérez-Álvarez, M., Cadenas-Pliego, G., Benavides-Mendoza, A., Valdés-Reyna, J., Pérez-Labrada, F., & Juárez-Maldonado, A. (2022). Seed priming with carbon nanomaterials improves the bioactive compounds of tomato plants under saline stress. Plants, 11(15), 1984. doi:10.3390/plants11151984
  • Gore, J. P., & Sane, A. (2011). Flame synthesis of carbon nanotubes. Rijeka: INTECH Open Access Publisher.
  • Harrison, B. S., & Atala, A. (2007). Carbon nanotube applications for tissue engineering. Biomaterials, 28(2), 344–353. doi:10.1016/j.biomaterials.2006.07.044
  • Hasan, M. M., Alabdallah, N. M., Alharbi, B. M., Waseem, M., Yao, G., Liu, X. D., … Fang, X. W. (2021). GABA: A key player in drought stress resistance in plants. International Journal of Molecular Sciences. 22, 10136. doi:10.3390/ijms221810136
  • Hasan, M. M., Alabdallah, N. M., Salih, A. M., Al-Shammari, A. S., ALZahrani, S. S., Al Lawati, A. H., … Fang, X. W. (2023). Modification of starch content and its management strategies in plants in response to drought and salinity: Current status and future prospects. Journal of Soil Science and Plant Nutrition, 23(1), 92–105. doi:10.1007/s42729-022-01057-7
  • Hasan, M. M., Alharbi, B. M., Alhaithloul, H. A. S., Abdulmajeed, A. M., Alghanem, S. M., Al-Mushhin, A. A., … Soliman, M. H. (2021). Spermine-mediated tolerance to selenium toxicity in wheat (Triticum aestivum L.) depends on endogenous nitric oxide synthesis. Antioxidants, 10(11), 1835. doi:10.3390/antiox10111835
  • Hasan, M. M., Ali, M. A., Soliman, M. H., Alqarawi, A. A., Abd Allah, E. F., & Fang, X. W. (2020). Insights into 28-homobrassinolide (HBR)- mediated redox homeostasis, AsA–GSH cycle, and methylglyoxal detoxification in soybean under drought-induced oxidative stress. Journal of Plant Interactions, 15(1), 371–385. doi:10.1080/17429145.2020.1832267
  • Hasan, M. M., Liu, X. D., Waseem, M., Guang-Qian, Y., Alabdallah, N. M., Jahan, M. S., & Fang, X. W. (2022). ABA activated SnRK2 kinases: An emerging role in plant growth and physiology. Plant Signaling & Behavior, 17, 2071024.
  • Hasan, M. M., Skalicky, M., Jahan, M. S., Hossain, M. N., Anwar, Z., Nie, Z. F., … Fang, X. W. (2021). Spermine: Its emerging role in regulating drought stress responses in plants. Cells, 261, 1–15. doi:10.3390/cells10020261
  • Hatami, M., Hadian, J., & Ghorbanpour, M. (2017). Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. Journal of Hazardous Materials, 324(Pt B), 306–320. doi:10.1016/j.jhazmat.2016.10.064
  • Hernández-Fernández, P., Montiel, M., Ocón, P., de la Fuente, J. L. G., García- Rodríguez, S., Rojas, S., & Fierro, J. L. (2010). Functionalization of multi-walled carbon nanotubes and application as supports for electrocatalysts in proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 99(1-2), 343–352. doi:10.1016/j.apcatb.2010.07.005
  • Hirsch, A., & Vostrowsky, O. (2005). Functionalization of carbon nanotubes. Topics in Current Chemistry, 245, 193–237.
  • Jahan, M. S., Hasan, M. M., Alotaibi, F. S., Alabdallah, N. M., Alharbi, B. M., Ramadan, K. M., … Dessoky, E. S. (2022). Exogenous putrescine increases heat tolerance in tomato seedlings by regulating chlorophyll metabolism and enhancing antioxidant defense efficiency. Plants, 11(8), 1038. doi:10.3390/plants11081038
  • Jahan, M. S., Li, G., Xie, D., Farag, R., Hasan, M. M., Alabdallah, N. M., … Altaf, M. A. (2023). Melatonin mitigates salt-induced growth inhibition through the regulation of carbohydrate and nitrogen metabolism in tomato seedlings. Journal of Soil Science and Plant Nutrition, 1–19.
  • Jiao, L., Zhang, L., Wang, X., Diankov, G., & Dai, H. (2009). Narrow graphene nanoribbons from carbon nanotubes. Nature, 458(7240), 877–880. doi:10.1038/nature07919
  • Karami, A., & Sepehri, A. (2017). Multiwalled carbon nanotubes and nitric oxide modulate the germination and early seedling growth of barley under drought and salinity. Agriculturae Conspectus Scientificusi, 82, 331–339.
  • Khan, M. N., Mobin, M., Abbas, Z. K., AlMutairi, K. A., & Siddiqui, Z. H. (2017). Siddiqui, Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry : PPB, 110, 194–209. doi:10.1016/j.plaphy.2016.05.038
  • Kim, T. Y., Lee, S. H., Ku, H., & Lee, S. Y. (2019). Enhancement of drought tolerance in cucumber plants by natural carbon materials. Plants, 8(11), 446. doi:10.3390/plants8110446
  • Kratschmer, W. (2011). The story of making fullerenes. Nanoscale, 3(6), 2485–2489. doi:10.1039/c0nr00925c
  • Kratschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990).Solid C60: A new form of carbon. Nature, 347(6291), 354–358. doi:10.1038/347354a0
  • Kumar, M., & Ando, Y. (2010). Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. Journal of Nanoscience and Nanotechnology, 10(6), 3739–3758. doi:10.1166/jnn.2010.2939
  • Lahiani, M. H., Chen, J., Irin, F., Puretzky, A. A., Green, M. J., & Khodakovskaya, M. V. (2015). Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon, 81, 607–619. doi:10.1016/j.carbon.2014.09.095
  • Li, H., Huang, J., Lu, F., Liu, Y., Song, Y., Sun, Y., Zhong, J., Huang, H., Wang, Y., Li, S., & Lifshitz, Y. (2018). Impacts of carbon dots on rice plants: Boosting the growth and improving the disease resistance. ACS Applied Bio Materials, 1(3), 663–672. doi:10.1021/acsabm.8b00345
  • Liu, X. D., Zeng, Y. Y., Zhang, X. Y., Tian, X. Q., Hasan, M. M., Yao, G. Q., & Fang, X. W. (2023). Polyamines inhibit abscisic acid‐induced stomatal closure by scavenging hydrogen peroxide. Physiologia Plantarum, 13903.
  • MacKenzie, K. J., See, C. H., Dunens, O. M., & Harris, A. T. (2008). Do single-walled carbon nanotubes occur naturally? Nature Nanotechnology, 3(6), 310. doi:10.1038/nnano.2008.139
  • Mracek, J., D. Fagan, R., M. Stengelin, R., & Hesjedal, T. (2011). Are carbon nanotubes a naturally occurring material? Hints from methane CVD using lava as a catalyst. Current Nanoscience, 7(3), 294–296. doi:10.2174/157341311795542543
  • Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490(7419), 254–257. doi:10.1038/nature11420
  • Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., & Kim, K. (2012). A roadmap for graphene. Nature, 490(7419), 192–200. doi:10.1038/nature11458
  • Pandey, K., Anas, M., Hicks, V. K., Green, M. J., & Khodakovskaya, M. V. (2019). Improvement of commercially valuable traits of industrial crops by application of carbon-based nanomaterials. Scientific Reports, 9(1), 19358. doi:10.1038/s41598-019-55903-3
  • Pandey, K., Lahiani, M. H., Hicks, V. K., Hudson, M. K., Green, M. J., & Khodakovskaya, M. (2018). Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PloS One, 13(8), e0202274. doi:10.1371/journal.pone.0202274
  • Panova, G. G., Ktitorova, I. N., Skobeleva, O. V., Sinjavina, N. G., Charykov, N. A., & Semenov, K. N. (2016). Impact of polyhydroxy fullerene (fullerol or fullerenol) on growth and biophysical characteristics of barley seedlings in favourable and stressful conditions. Plant Growth Regulation, 79(3), 309–317. doi:10.1007/s10725-015-0135-x
  • Parthasarathy, G., Srinivasan, R., Vairamani, M., Ravikumar, K., & Kunwar, A. C. (1998). Occurrence of natural fullerenes in low grade metamorphosed Proterozoic shungite from Karelia, Russia. Geochimica et Cosmochimica Acta, 62(21/22), 3541–3544. doi:10.1016/S0016-7037(98)00242-7
  • Rahimi, D., Kartoolinejad, D., Nourmohammadi, K., & Naghdi, R. (2016). Increasing drought resistance of Alnus subcordata CA Mey. seeds using a nano priming technique with multi-walled carbon nanotubes. Journal of Forest Science, 62(6), 269–278. doi:10.17221/15/2016-JFS
  • Rahman, M. A., Woo, J. H., Song, Y., Lee, S. H., Hasan, M. M., Azad, M. A. K., & Lee, K. W. (2022). Heat shock proteins and antioxidant genes involved in heat combined with drought stress responses in perennial rye grass. Life, 12(9), 1426. doi:10.3390/life12091426
  • Rodrigues, S. M., Demokritou, P., Dokoozlian, N., Hendren, C. O., Karn, B., Mauter, M. S., … Viers, J. (2017). Nanotechnology for sustainable food production: Promising opportunities and scientific challenges. Environmental Science: Nano, 4(4), 767–781. doi:10.1039/C6EN00573J
  • Sachkova, A. S., Kovel, E. S., Churilov, G. N., Stom, D. I., & Kudryasheva, N. S. (2019). Biological activity of carbonic nano-structures - comparison via enzymatic bioassay. Journal of Soils and Sediments, 19(6), 2689–2696. doi:10.1007/s11368-018-2134-9
  • Shafiq, F., Iqbal, M., Ali, M., & Ashraf, M. A. (2021). Fullerenol regulates oxidative stress and tissue ionic homeostasis in spring wheat to improve net-primary productivity under salt-stress. Ecotoxicology and Environmental Safety, 211, 111901. doi:10.1016/j.ecoenv.2021.111901
  • Shafiq, F., Iqbal, M., Ashraf, M. A., & Ali, M. (2020). Foliar applied fullerol differentially improves salt tolerance in wheat through ion compartmentalization, osmotic adjustments and regulation of enzymatic antioxidants. Physiology and Molecular Biology of Plants : An International Journal of Functional Plant Biology, 26(3), 475–487. doi:10.1007/s12298-020-00761-x
  • Srivastava, V., Gusain, D., & Sharma, Y. C. (2015). Critical review on the toxicity of some widely used engineered nanoparticles. Industrial & Engineering Chemistry Research, 54(24), 6209–6233. doi:10.1021/acs.iecr.5b01610
  • Su, D. S., & Chen, X. (2007). Natural lavas as catalysts for efficient production of carbon nanotubes and nanofibers. Angewandte Chemie (International ed. in English), 46(11), 1823–1824. doi:10.1002/anie.200604207
  • Su, L. X., Ma, X. L., Zhao, K. K., Shen, C. L., Lou, Q., Yin, D. M., & Shan, C. X. (2018). Carbon nanodots for enhancing the stress resistance of peanut plants. Acs Omega,.3(12), 17770–17777. doi:10.1021/acsomega.8b02604
  • Velasco-Santos, C., Martínez-Hernández, A. L., Consultchi, A., Rodríguez, R., & Castaño, V. M. (2003). Naturally produced carbon nanotubes. Chemical Physics Letters. 373(3-4), 272–276. doi:10.1016/S0009-2614(03)00615-8
  • Verma, S. K., Das, A. K., Patel, M. K., Shah, A., Kumar, V., & Gantait, S. (2018). Engineered nanomaterials for plant growth and development: A perspective analysis. The Science of the Total Environment, 630, 1413–1435. doi:10.1016/j.scitotenv.2018.02.313
  • Wan, J., Wang, R., Bai, H., Wang, Y., & Xu, J. (2020). Comparative physiological and metabolomics analysis reveals that single-walled carbon nanohorns and ZnO nanoparticles affect salt tolerance in Sophora alopecuroides. Environmental Science: Nano, 7(10), 2968–2981. doi:10.1039/D0EN00582G
  • Wang, C., Ji, Y., Cao, X., Yue, L., Chen, F., Li, J., Yang, H., Wang, Z., & Xing, B. (2022). Carbon dots improve nitrogen bioavailability to promote the growth and nutritional quality of soybeans under drought stress. ACS Nano, 16(8), 12415–12424. doi:10.1021/acsnano.2c03591
  • Wei, H., & Wang, E. (2013). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chemical Society Reviews, 42(14), 6060–6093. doi:10.1039/c3cs35486e
  • Xiong, J. L., Li, J., Wang, H. C., Zhang, C. L., & Naeem, M. S. (2018). Fullerol improves seed germination, biomass accumulation, photosynthesis and antioxidant system in Brassica napus L. under water stress. Plant Physiology and Biochemistry : PPB, 129, 130–140. doi:10.1016/j.plaphy.2018.05.026
  • Yang, H., Wang, C., Chen, F., Yue, L., Cao, X., Li, J., Zhao, X., Wu, F., Wang, Z., & Xing, B. (2022). Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. The Science of the Total Environment, 809, 151105. doi:10.1016/j.scitotenv.2021.151105
  • Yousefi, S., Kartoolinejad, D., & Naghdi, R. (2017). Effects of priming with multi-walled carbon nanotubes on seed physiological characteristics of Hopbush (Dodonaea viscosa L.) under drought stress. International Journal of Environmental Studies, 74(4), 528–539. doi:10.1080/00207233.2017.1325627
  • Zhang, Q., Huang, J., Zhao, M., Qian, W., & Wei, F. (2011). Carbon nanotube mass production: Principles and processes. ChemSusChem. 4(7), 864–889. doi:10.1002/cssc.201100177
  • Zhao, G., Zhao, Y., Lou, W., Su, J., Wei, S., Yang, X., Wang, R., Guan, R., Pu, H., & Shen, W. (2019). Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale, 11(21), 10511–10523. doi:10.1039/c8nr10514f