454
Views
3
CrossRef citations to date
0
Altmetric
Original Article

An investigation of two integro-differential KP hierarchy equations to find out closed form solitons in mathematical physics

, , , & ORCID Icon
Pages 535-545 | Received 05 Jun 2023, Accepted 02 Sep 2023, Published online: 09 Sep 2023

References

  • Abdou, M. A. (2007). The extended F-expansion method and its applications for a class of nonlinear evolution equations. Chaos Solitons and Fractals, 31(1), 95–104. doi:10.1016/j.chaos.2005.09.030
  • Ahmad, H., Seadawy, A. R., & Khan, T. A. (2020). Numerical solution of Korteweg–de Vries-Burgers equation by the modified variational iteration algorithm-II arising in shallow water waves. Physica Scripta, 95(4), 045210. doi:10.1088/1402-4896/ab6070
  • Akinyemi, L., Houwe, A., Abbagari, S., Wazwaz, A. M., Alshehri, H. M., & Osman, M. S. (2023). Effects of the higher-order dispersion on solitary waves and modulation instability in a monomode fiber. Optik, 288, 171202. doi:10.1016/j.ijleo.2023.171202
  • Alanazi, M. M., Ouahid, L., Al Shahrani, J. S., Abdou, M. A., & Kumar, S. (2023). Novel soliton solutions to the Atangana Baleanu (AB) fractional for ion sound and Langmuir waves (ISALWs) equations. Optical and Quantum Electronics, 55(5), 462. doi:10.1007/s11082-023-04736-6
  • Ali, H. M. S., Miah, M. M., & Akbar, M. A. (2018). Study of abundant explicit wave solutions of the Drinfeld-Sokolov-Satsuma-Hirota (DSSH) equation and the shallow water wave equation. Propulsion and Power Research, 7(4), 320–328. doi:10.1016/j.jppr.2018.11.007
  • Djennadi, S., Shawagfeh, N., Inc, M., Osman, M. S., Gómez-Aguilar, J. F., & Abu Arqub, O. (2021). The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Physica Scripta, 96(9), 094006. doi:10.1088/1402-4896/ac0867
  • El-Ganaini, S., & Kumar, S. (2023). Symbolic computation to construct new soliton solutions and dynamical behaviors of various wave structures for two different extended and generalized nonlinear Schrödinger equations using the new improved modified generalized sub-ODE proposed method. Mathematics and Computers in Simulation, 208, 28–56. doi:10.1016/j.matcom.2023.01.013
  • Hong, B., Chen, W., Zhang, S., & Xub, J. (2019). The (G′G′+G+A)-expansion method for two types of nonlinear schr o¨ dinger equations. Journal of Mathematical Physics, 31, 5, 1155–1156.
  • Inc, M., Miah, M., Akher, C., Ali, S., Rezazadeh, H., Ali Akinlar, M., & Chu, Y.-M. (2020). New exact solutions for Kaup-Kupershmidt equation. AIMS Mathematics, 5(6), 6726–6738. doi:10.3934/math.2020432
  • Iqbal, M. A., Baleanu, D., Miah, M. M., Ali, H. S., Alshehri, H. M., & Osman, M. S. (2023). “New soliton solutions of the mZK equation and Gerdjikov-Ivanov equation by employing the double (G′G, 1G)-expansion method. Results in Physics, 47, 106391. doi:10.1016/j.rinp.2023.106391
  • Iqbal, M. A., Wang, Y., Miah, M. M., & Osman, M. S. (2021). Study on Date-Jimbo- Kashiwara-Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal and Fractional, 6(1), 4. doi:10.3390/fractalfract6010004
  • Jiang, C., Sheng, H. H., & Qing, Y. K. (2005). A generalized F-expansion method and its applications in high-dimensional nonlinear evolution equation. Communications in Theoretical Physics, 44(2), 307–310. doi:10.1088/6102/44/2/307
  • Khaliq, S., Ullah, A., Ahmad, S., Akgül, A., Yusuf, A., & Sulaiman, T. A. (2022). Some novel analytical solutions of a new extended (2 + 1)-dimensional Boussinesq equation using a novel method. Journal of Ocean Engineering and Science, 4, 10 doi:10.1016/j.joes.2022.04.010
  • Kumar, S., & Rani, S. (2021). Invariance analysis, optimal system, closed-form solutions and dynamical wave structures of a (2 + 1)-dimensional dissipative long wave system. Physica Scripta, 96(12), 125202. doi:10.1088/1402-4896/ac1990
  • Kumar, S., & Rani, S. (2022). Symmetries of optimal system, various closed-form solutions, and propagation of different wave profiles for the Boussinesq–Burgers system in ocean waves. Physics of Fluids, 34(3), 037109. doi:10.1063/5.0085927
  • Kumar, S., Hamid, I., & Abdou, M. A. (2023). Some specific optical wave solutions and combined other solitons to the advanced (3 + 1)-dimensional Schrödinger equation in nonlinear optical fibers. Optical and Quantum Electronics, 55(8), 728. doi:10.1007/s11082-023-04976-6
  • Kumar, S., Mann, N., Kharbanda, H., & Inc, M. (2023). Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2 + 1)-dimensional Konopelchenko–Dubrovsky (KD) system. Analysis and Mathematical Physics, 13(3), 40. doi:10.1007/s13324-023-00802-0
  • Li, L., Li, E., & Wang, M. (2010). “The (G′G, 1G)-expansion method and its application to travelling wave solutions of the Zakharov equations. Applied Mathematics-A Journal of Chinese Universities, 25(4), 454–462. doi:10.1007/s11766-010-2128-x
  • Malwe, B. H., Betchewe, G., Doka, S. Y., & Kofane, T. C. (2016). Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dynamics, 84(1), 171–177. doi:10.1007/s11071-015-2318-4
  • Mia, R., Miah, M. M., & Osman, M. S. (2023). A new implementation for finding of analytical solutions in nonlinear PDEs. Heliyon, 9(5), e15690. doi:10.1016/j.heliyon.2023.e15690
  • Miah, M. M. (2022). The fifth order Caudrey-Dodd-Gibbon equation for exact travelling wave solutions using the (G′G, 1G)-expansion method. Springer proceedings in complexity, Nonlinear Dynamics and Applications, Proceedings of the ICNDA 2022, p 1087–1096.
  • Miah, M. M., Ali, H. M. S., Akbar, M. A., & Wazwaz, A. M. (2017). “Some applications of the (G′G, 1G)-expansion method to find new exact solutions of NLEEs”. The European Physical Journal plus, 132, 252.
  • Miah, M. M., Iqbal, M. A., & Osman, M. S. (2023). A Study on stochastic longitudinal wave equation in a magneto-electro-elastic annular bar to find the analytical solutions. Communications in Theoretical Physics, 75(8), 085008. doi:10.1088/1572-9494/ace155
  • Miah, M. M., Seadawy, A. R., Ali, H. M. S., & Akbar, M. A. (2019). “The further investigations to extract abundant new exact traveling wave solutions of some NLEEs by employing the generalized (G′G)-expansion method. Journal of Ocean Engineering and Science, 4(4), 387–394. doi:10.1016/j.joes.2019.06.004
  • Niwas, M., & Kumar, S. (2023). New plenteous soliton solutions and other form solutions for a generalized dispersive long-wave system employing two methodological approaches. Optical and Quantum Electronics, 55(7), 630. doi:10.1007/s11082-023-04847-0
  • Oad, A., Arshad, M., Shoaib, M., Lu, D., & Li, X. (2021). Novel soliton solutions of two-mode sawada-kotera equation and its applications. IEEE Access. 9, 127368–127381. doi:10.1109/ACCESS.2021.3111704
  • Qureshi, S., Akanbi, M. A., Shaikh, A. A., Wusu, A. S., Ogunlaran, O. M., Mahmoud, W., & Osman, M. S. (2023). A new adaptive nonlinear numerical method for singular and stiff differential problems. Alexandria Engineering Journal, 74, 585–597. doi:10.1016/j.aej.2023.05.055
  • Rani, S., Kumar, S., & Mann, N. (2023). On the dynamics of optical soliton solutions, modulation stability, and various wave structures of a (2 + 1)-dimensional complex modified Korteweg-de-Vries equation using two integration mathematical methods. Optical and Quantum Electronics, 55(8), 731. doi:10.1007/s11082-023-04946-y
  • Redi, R. T., Obsie, Y., & Shiferaw, A. (2018). “The improved (G′G)-Eexpansion method to the generalized Burgers-Fisher equation”. Mathematical Modelling and Applications, 3, 16–30.
  • Seadawy, A. R., & Cheemaa, N. (2020). Some new families of spiky solitary waves of one-dimensional higher-order K-dV equation with power law nonlinearity in plasma physics. Indian Journal of Physics, 94(1), 117–126. doi:10.1007/s12648-019-01442-6
  • Seadawy, A. R., Arshad, M., & Lu, D. (2020). The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows. Chaos, Solitons & Fractals, 139, 110141. doi:10.1016/j.chaos.2020.110141
  • Seadawy, A. R., Iqbal, M., & Lu, D. (2020). Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma. Physica A: Statistical Mechanics and Its Applications, 544, 123560. doi:10.1016/j.physa.2019.123560
  • Seadawy, A. R., Rizvi, S. T. R., Ahmad, S., Younis, M., & Baleanu, D. (2021). Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation. Open Physics, 19(1), 1–10. doi:10.1515/phys-2020-0224
  • Shehzad, K., Seadawy, A. R., Wang, J., & Arshad, M. (2023). Multi peak solitons and btreather types wave solutions of unstable NLSEs with stability and applications in optics. Optical and Quantum Electronics, 55(1), 7. doi:10.1007/s11082-022-04252-z
  • Tala-Tebue, E., Seadawy, A. R., Kamdoum-Tamo, P. H., & Lu, D. (2018). Dispersive optical soliton solutions of the higher-order nonlinear Schrödinger dynamical equation via two different methods and its applications. The European Physical Journal plus, 133(7), 1–10. doi:10.1140/epjp/i2018-12133-8
  • Tripathy, A., & Sahoo, S. (2021). A novel analytical method for solving (2 + 1)- dimensional extended Calogero-Bogoyavlenskii-Schiff equation in plasma physics. Journal of Ocean Engineering and Science, 6(4), 405–409. doi:10.1016/j.joes.2021.04.003
  • Tverdyi, D., & Parovik, R. (2022). Application of the fractional Riccati equation for mathematical modeling of dynamic processes with saturation and memory effect. Fractal and Fractional, 6(3), 163. doi:10.3390/fractalfract6030163
  • Zayed, E. M. E., & Alurrfi, K. A. E. (2014). “The (G′G, 1G)-expansion method and its applications for solving two higher order nonlinear evolution equations. Mathematical Problems in Engineering, 2014, 1–20. doi:10.1155/2014/746538