455
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Total oxidation of propane using titania-supported platinum nanoparticles prepared through sol-immobilization

ORCID Icon
Pages 53-64 | Received 18 Jul 2022, Accepted 14 Dec 2023, Published online: 26 Dec 2023

References

  • Albilali, R., Douthwaite, M., He, Q., & Taylor, S. H. (2018). The selective hydrogenation of furfural over supported palladium nanoparticle catalysts prepared by sol-immobilisation: Effect of catalyst support and reaction conditions. Catalysis Science & Technology, 8(1), 252–267. doi:10.1039/C7CY02110K
  • Avila, M. S., Vignatti, C. I., Apesteguía, C. R., & Garetto, T. F. (2014). Effect of support on the deep oxidation of propane and propylene on Pt-based catalysts. Chemical Engineering Journal, 241, 52–59. doi:10.1016/j.cej.2013.12.006
  • Bahruji, H., Bowker, M., Hutchings, G., Dimitratos, N., Wells, P., Gibson, E., … Lalev, G. (2016). Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis. 343, 133–146. doi:10.1016/j.jcat.2016.03.017
  • Baranowska, K., & Okal, J. (2016). Performance and stability of the Ru-Re/γ-Al2O3 catalyst in the total oxidation of propane: Influence of the order of impregnation. Catalysis Letters, 146(1), 72–81. doi:10.1007/s10562-015-1619-z
  • Camposeco, R., Castillo, S., & Zanella, R. (2023). Catalytic oxidation of propane and carbon monoxide by Pd nanoparticles on Mn/TiO2 catalysts. Catalysis Letters, doi:10.1007/s10562-023-04285-3
  • Cavaliere, S., Subianto, S., Chevallier, L., Jones, D. J., & Rozière, J. (2011). Single step elaboration of size-tuned Pt loaded titania nanofibres. Chemical Communications, 47(24), 6834–6836. doi:10.1039/C1CC11716E
  • Chen, Y. S., Cao, Y. D., Ran, R., Wu, X. D., & Weng, D. (2018). Controlled pore size of Pt/KIT-6 used for propane total oxidation. Rare Metals, 37(2), 123–128. doi:10.1007/s12598-017-0937-2
  • Chinthaginjala, J. K., Villa, A., Su, D. S., Mojet, B. L., & Lefferts, L. (2012). Nitrite reduction over Pd supported CNFs: Metal particle size effect on selectivity. Catalysis Today. 183(1), 119–123. doi:10.1016/j.cattod.2011.11.003
  • Choudhary, T. V., Banerjee, S., & Choudhary, V. R. (2002). Catalysts for combustion of methane and lower alkanes. Applied Catalysis A: General, 234(1–2), 1–23. doi:10.1016/S0926-860X(02)00231-4
  • Debecker, D. P., Farin, B., Gaigneaux, E. M., Sanchez, C., & Sassoye, C. (2014). Total oxidation of propane with a nano-RuO2/TiO2 catalyst. Applied Catalysis A: General, 481, 11–18. doi:10.1016/j.apcata.2014.04.043
  • Duan, J., Tan, J., Yang, L., Wu, S., & Hao, J. (2008). Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research. 88(1), 25–35. doi:10.1016/j.atmosres.2007.09.004
  • Flagan, R. C., & Seinfield, J. H. (1988). Fundamentals of air pollution engineering (1st ed.). Hoboken, NJ: Prentice-Hall Inc.
  • Garcia, T., Agouram, S., Taylor, S. H., Morgan, D., Dejoz, A., Vázquez, I., & Solsona, B. (2015). Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: Influence of the order of impregnation. Catalysis Today. 254, 12–20. doi:10.1016/j.cattod.2015.01.038
  • Gurjar, B. R., Jain, A., Sharma, A., Agarwal, A., Gupta, P., Nagpure, A. S., & Lelieveld, J. (2010). Human health risks in megacities due to air pollution. Atmospheric Environment. 44(36), 4606–4613. doi:10.1016/j.atmosenv.2010.08.011
  • Hasan, M. A., Zaki, M. I., & Pasupulety, L. (2002). IR investigation of the oxidation of propane and likely C3 and C2 products over group IVB metal oxide catalysts. The Journal of Physical Chemistry B, 106(49), 12747–12756. doi:10.1021/jp0214413
  • He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S., & Hao, Z. (2019). Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chemical Reviews, 119(7), 4471–4568. doi:10.1021/acs.chemrev.8b00408
  • Hu, Z., Wang, Z., Guo, Y., Wang, L., Guo, Y., Zhang, J., & Zhan, W. (2018). Total oxidation of propane over a Ru/CeO2 catalyst at low temperature. Environmental Science & Technology, 52(16), 9531–9541. doi:10.1021/acs.est.8b03448
  • Huang, H., Xu, Y., Feng, Q., & Leung, D. Y. C. (2015). Low temperature catalytic oxidation of volatile organic compounds: A review. Catalysis Science & Technology, 5(5), 2649–2669. doi:10.1039/C4CY01733A
  • Khudorozhkov, A. K., Chetyrin, I. A., Bukhtiyarov, A. V., Prosvirin, I. P., & Bukhtiyarov, V. I. (2017). Propane oxidation Over Pd/Al2O3: Kinetic and in situ XPS study. Topics in Catalysis, 60(1–2), 190–197. doi:10.1007/s11244-017-0733-0
  • Liu, L., Han, W., Dong, F., Feng, H., & Zhicheng, T. (2022). Construction of framework confined ordered mesoporous Pt/TixAlOy catalysts and applied for the catalytic oxidation of propane. Microporous and Mesoporous Materials, 341, 112111. doi:10.1016/j.micromeso.2022.112111
  • Neyertz, C., Volpe, M., & Gigola, C. (2004). Methane combustion over Pd/γ-Al2O3 and Pd-VOx/γ-Al2O3 catalysts. Applied Catalysis A: General, 277, 137–145. doi:10.1016/j.apcata.2004.09.004
  • Okal, J., & Zawadzki, M. (2009). Influence of catalyst pretreatments on propane oxidation over Ru/γ-Al2O3. Catalysis Letters, 132(1–2), 225–234. doi:10.1007/s10562-009-0100-2
  • Otto, K., Andino, J. M., & Parks, C. L. (1991). The influence of platinum concentration and particle size on the kinetics of propane oxidation over Pt/γ-alumina. Journal of Catalysis. 131(1), 243–251. doi:10.1016/0021-9517(91)90341-Z
  • Park, J. E., Kim, B. B., & Park, E. D. (2015). Propane combustion over Pt/Al2O3 catalysts with different crystalline structures of alumina. Korean Journal of Chemical Engineering, 32(11), 2212–2219. doi:10.1007/s11814-015-0062-6
  • Park, J. E., Kim, K. B., Kim, Y. A., Song, K. S., & Park, E. D. (2013). Effect of Pt particle size on propane combustion over Pt/ZSM-5. Catalysis Letters, 143(11), 1132–1138. doi:10.1007/s10562-013-1140-1
  • Park, J. E., Kim, K. B., Seo, K. W., Song, K. S., & Park, E. D. (2011). Propane combustion over supported Pt catalysts. Research on Chemical Intermediates, 37(9), 1135–1143. doi:10.1007/s11164-011-0379-7
  • Ramadhas, A. S. (2011). Alternative fuels for transportation (6th ed.). Boca Raton, FL: CRC Press.
  • Ruth, K., Hayes, M., Burch, R., Tsubota, S., & Haruta, M. (2000). The effects of SO2 on the oxidation of CO and propane on supported Pt and Au catalysts. Applied Catalysis B: Environmental, 24(3–4), L133–L138. doi:10.1016/S0926-3373(99)00100-9
  • Ryerson, T. B., Trainer, M., Holloway, J. S., Parrish, D. D., Huey, L. G., Sueper, D. T., … Fehsenfeld, F. C. (2001). Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science, 292(5517), 719–723. doi:10.1126/science.1058113
  • Schick, L., Sanchis, R., González-Alfaro, V., Agouram, S., López, J. M., Torrente-Murciano, L., … Solsona, B. (2019). Size-activity relationship of iridium particles supported on silica for the total oxidation of volatile organic compounds (VOCs). Chemical Engineering Journal, 366(February), 100–111. doi:10.1016/j.cej.2019.02.087
  • Sellick, D., Morgan, D., & Taylor, S. (2015). Silica supported platinum catalysts for total oxidation of the polyaromatic hydrocarbon naphthalene: An investigation of metal loading and calcination temperature. Catalysts, 5(2), 690–702. doi:10.3390/catal5020690
  • Shil, A. K., & Das, P. (2013). Solid supported platinum(0) nanoparticles catalyzed chemo-selective reduction of nitroarenes to N-arylhydroxylamines. Green Chemistry, 15(12), 3421–3428. doi:10.1039/c3gc41179f
  • Taylor, M. N., Zhou, W., Garcia, T., Solsona, B., Carley, A. F., Kiely, C. J., & Taylor, S. H. (2012). Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane. Journal of Catalysis, 285(1), 103–114. doi:10.1016/j.jcat.2011.09.019
  • Viéitez-Calo, S., Morgan, D. J., Golunski, S., Taylor, S. H., & Twigg, M. V. (2021). Structure sensitivity and hydration effects in Pt/TiO2 and Pt/TiO2–SiO2 catalysts for NO and propane oxidation. Topics in Catalysis, 64(17–20), 955–964. doi:10.1007/s11244-021-01415-2
  • Villa, A., Wang, D., Dimitratos, N., Su, D., Trevisan, V., & Prati, L. (2010). Pd on carbon nanotubes for liquid phase alcohol oxidation. Catalysis Today. 150(1–2), 8–15. doi:10.1016/j.cattod.2009.06.009
  • Wang, Z., Wang, W., Khalid, O., Weber, T., Spriewald Luciano, A., Zhan, W., … Over, H. (2022). Supported RuxIr1-xO2 mixed oxides catalysts for propane combustion: Resistance against water poisoning. ChemCatChem, 14(12), e202200149. doi:10.1002/cctc.202200149
  • Yang, A. C., Zhu, H., Li, Y., & Cargnello, M. (2021). Support acidity improves Pt activity in propane combustion in the presence of steam by reducing water coverage on the active sites. ACS Catalysis, 11(11), 6672–6683. doi:10.1021/acscatal.1c01280
  • Zhu, X., Cheng, B., Yu, J., & Ho, W. (2016). Halogen poisoning effect of Pt-TiO2 for formaldehyde catalytic oxidation performance at room temperature. Applied Surface Science. 364, 808–814. doi:10.1016/j.apsusc.2015.12.115