316
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Plasma galectin-3 is associated with decreased glomerular filtration rate in chronic HIV

ORCID Icon, , , , , & show all
Article: 2261753 | Received 29 Jun 2023, Accepted 18 Sep 2023, Published online: 02 Oct 2023

References

  • Ekrikpo UE, Kengne AP, Bello AK, et al. Chronic kidney disease in the global adult HIV-infected population: A systematic review and meta-analysis. PLoS One. 2018;13(4):e0195443.
  • Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011). 2022;12(1):7–11.
  • Charles C, Ferris AH. Chronic kidney disease. Prim Care. 2020;47(4):585–595.
  • Romagnani P, Remuzzi G, Glassock R, et al. Chronic kidney disease. Nat Rev Dis Primers. 2017;3(1):17088.
  • Heron JE, Bagnis CI, Gracey DM. Contemporary issues and new challenges in chronic kidney disease amongst people living with HIV. AIDS Res Ther. 2020;17(1):11.
  • Wyatt CM. Kidney disease and HIV infection. Top Antivir Med. 2017;25(1):13–16.
  • Bertoldi A, De Crignis E, Miserocchi A, et al. HIV and kidney: a dangerous liaison. New Microbiol. 2017;40(1):1–10.
  • Evans M, Lewis RD, Morgan AR, et al. A narrative review of chronic kidney disease in clinical practice: Current challenges and future perspectives. Adv Ther. 2022;39(1):33–43.
  • Naicker S, Rahmanian S, Kopp JB. HIV and chronic kidney disease. Clin Nephrol. 2015;83(7 Suppl 1):32–38.
  • Gameiro J, Jorge S, Lopes JA. HIV and renal disease: a contemporary review. Int J STD AIDS. 2018;29(7):714–719.
  • Fiseha T, Gebreweld A. Renal function in a cohort of HIV-infected patients initiating antiretroviral therapy in an outpatient setting in Ethiopia. PLoS One. 2021;16(1):e0245500.
  • Mwemezi O, Ruggajo P, Mngumi J, Furia FF. Renal dysfunction among HIV-infected patients on antiretroviral therapy in Dar es Salaam, Tanzania: a cross-sectional study. Int J Nephrol. 2020;2020:8378947.
  • Mikulak J, Singhal PC. HIV-1 and kidney cells: better understanding of viral interaction. Nephron Exp Nephrol. 2010;115(2):e15–e21.
  • O'Seaghdha CM, Hwang S-J, Ho JE, Vasan RS, Levy D, Fox CS. Elevated galectin-3 precedes the development of CKD. J Am Soc Nephrol. 2013;24(9):1470–1477.
  • Panizo S, Martínez-Arias L, Alonso-Montes C. Fibrosis in chronic kidney disease: pathogenesis and consequences. Int J Mol Sci. 2021;22(1):408.
  • Li L-c, Li J, Gao J. Functions of galectin-3 and its role in fibrotic diseases. J Pharmacol Exp Ther. 2014;351(2):336–343.
  • Liu F-T, Hsu DK. The role of galectin-3 in promotion of the inflammatory response. Drug News Perspect. 2007;20(7):455–460.
  • Díaz-Alvarez L, Ortega E. The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediators Inflamm. 2017;2017:9247574–9247510.
  • Vasta GR. Galectins as Pattern Recognition Receptors: Structure, Function, and Evolution. New York: Springer New York; 2012:21–36.
  • Dong R, Zhang M, Hu Q, et al. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int J Mol Med. 2018;41(2):599–614.
  • Hara A, Niwa M, Noguchi K, et al. Galectin-3 as a next-generation biomarker for detecting early stage of various diseases. Biomolecules 2020;10(3):389.
  • Nishiyama J, Kobayashi S, Ishida A, et al. Up-regulation of galectin-3 in acute renal failure of the rat. Am J Pathol. 2000;157(3):815–823.
  • Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 2008;172(2):288–298.
  • Ou S-M, Tsai M-T, Chen H-Y, et al. Identification of galectin-3 as potential biomarkers for renal fibrosis by RNA-sequencing and clinicopathologic findings of kidney biopsy. Front Med (Lausanne). 2021;8:748225.
  • Chen S-C, Kuo P-L. The role of galectin-3 in the kidneys. Int J Mol Sci. 2016;17(4):565.
  • Wang S-F, Tsao C-H, Lin Y-T, et al. Galectin-3 promotes HIV-1 budding via association with Alix and Gag p6. Glycobiology 2014;24(11):1022–1035.
  • Wang S-F, Hung Y-H, Tsao C-H, et al. Galectin-3 facilitates cell-to-cell HIV-1 transmission by altering the composition of membrane lipid rafts in CD4 T cells. Glycobiology 2022;32(9):760–777.
  • Fogel S, Guittaut M, Legrand A, Monsigny M, Hébert E. The tat protein of HIV-1 induces galectin-3 expression. Glycobiology 1999;9(4):383–387.
  • Shikuma CM, Seto T, Liang CY, et al. Vitamin D levels and markers of arterial dysfunction in HIV. AIDS Res Hum Retroviruses. 2012;28(8):793–797.
  • SahBandar IN, Ndhlovu LC, Saiki K, et al. Relationship between circulating inflammatory monocytes and cardiovascular disease measures of carotid intimal thickness. J Atheroscler Thromb. 2020;27(5):441–448.
  • Chew GM, Fujita T, Webb GM, et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog. 2016;12(1):e1005349.
  • Ibrahim F, Hamzah L, Jones R, Nitsch D, Sabin C, Post FA, UK CHIC/CKD* Study Group. Comparison of CKD-EPI and MDRD to estimate baseline renal function in HIV-positive patients. Nephrol Dial Transplant. 2012;27(6):2291–2297.
  • Vrouenraets S, Fux CA, Wit F, et al. A comparison of measured and estimated glomerular filtration rate in successfully treated HIV-patients with preserved renal function. Clin Nephrol. 2012;77(4):311–320.
  • Sciacchitano S, Lavra L, Morgante A, et al. Galectin-3: One molecule for an alphabet of diseases, from A to Z. Int J Mol Sci. 2018;19(2):379.
  • Martínez-Martínez E, Brugnolaro C, Ibarrola J, et al. CT-1 (Cardiotrophin-1)-Gal-3 (Galectin-3) axis in cardiac fibrosis and inflammation. Hypertension. 2019;73(3):602–611.
  • Desmedt V, Desmedt S, Delanghe JR, Speeckaert R, Speeckaert MM. Galectin-3 in renal pathology: More than just an innocent bystander. Am J Nephrol. 2016;43(5):305–317.
  • Iacoviello M, Aspromonte N, Leone M, et al. Galectin-3 serum levels are independently associated with microalbuminuria in chronic heart failure outpatients. Res Cardiovasc Med. 2016;5(1):e28952.
  • Sano H, Hsu DK, Yu L, et al. Human Galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol. 2000;165(4):2156–2164.
  • Abusamra D, Anastasiou M, Panjwani NA, Alcaide P, Argueso P. Galectin-3 modulates monocyte infiltration in the injured cornea by inducing sialyl LewisX expression. Invest Ophthalmol Visual Sci. 2022;63(7):419–419.
  • Mercier S, St-Pierre C, Pelletier I, Ouellet M, Tremblay MJ, Sato S. Galectin-1 promotes HIV-1 infectivity in macrophages through stabilization of viral adsorption. Virology 2008;371(1):121–129.
  • St-Pierre C, Manya H, Ouellet M, et al. Host-soluble galectin-1 promotes HIV-1 replication through a direct interaction with glycans of viral gp120 and host CD4. J Virol. 2011;85(22):11742–11751.
  • Tandon R, Chew GM, Byron MM, et al. Galectin-9 is rapidly released during acute HIV-1 infection and remains sustained at high levels despite viral suppression even in elite controllers. AIDS Res Human Retroviruses. 2014;30(7):654–664.
  • Bi S, Hong PW, Lee B, Baum LG. Galectin-9 binding to cell surface protein disulfide isomerase regulates the redox environment to enhance T-cell migration and HIV entry. Proc Natl Acad Sci U S A. 2011;108(26):10650–10655.
  • Su H, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: An update. Front Immunol. 2017;8:405.
  • Ramseyer VD, Garvin JL. Tumor necrosis factor-alpha: regulation of renal function and blood pressure. Am J Physiol Renal Physiol. 2013;304(10):F1231–1242.