541
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Eliciting specialized metabolites from marine microalgae using abiotic stress

& ORCID Icon
Pages 1-11 | Received 20 May 2023, Accepted 02 Nov 2023, Published online: 25 Feb 2024

References

  • Ahamad, T. S., Brindhadevi, K., Krishnan, R., Phuong, T. N., Alharbi, S. A., Chinnathambi, A., & Mathimani, T. (2022). Invivo detection of triacylglycerols through Nile red staining and quantification of fatty acids in hyper lipid producer Nannochloropsis sp. cultured under adequate nitrogen and deficient nitrogen condition. Fuel, 322, 124179. doi:10.1016/j.fuel.2022.124179
  • Aldholmi, M., Ahmad, R., Carretero-Molina, D., Pérez-Victoria, I., Martín, J., and Ganesan, A. (2022). Euglenatides, potent antiproliferative cyclic peptides isolated from the freshwater photosynthetic microalga Euglena gracilis. Angewandte Chemie International Edition Engl, 61, e202203175. doi:10.1002/anie.202203175
  • AntiBase. (2021, 07 05) A bioinformatics tool for natural product databases | chemoinformatics databases. Retrieved from https://omictools.com/antibase-tool
  • Atlantic Ocean | Definition, Temperature, Weather, & Facts. (2021). Retrieved from https://www.britannica.com/place/Atlantic-Ocean
  • Baier, T., Wichmann, J., Kruse, O., & Lauersen, K. J. (2018). Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Research, 46, 6909–6919. doi:10.1093/nar/gky532
  • Béchemin, C., Grzebyk, D., Hachame, F., Hummert, C., & Maestrini, S. (1999). Effect of different nitrogen/phosphorus nutrient ratios on the toxin content in Alexandrium minutum. Aquatic Microbial Ecology: International Journal, 20, 157–165. doi:10.3354/ame020157
  • Bjorn Bode, H.; Bethe, B.; Hofs, R.; Zeeck, A. (2002). Big effects from small changes: Possible ways to explore Nature’s chemical diversity. ChemBiochem, 3, 619–627. doi:10.1002/1439-7633(20020703)3:7
  • Cai, W.-J., Huang, W.-J., Luther, G. W., Pierrot, D., Li, M., … Kemp, W. M. 2017 Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay. Nature Communications, 8, 369. doi:10.1038/s41467-017-00417-7
  • Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2023). Marine natural products. Natural Product Reports, 40, 275–325. doi:10.1039/D2NP00083K
  • Chaffin, J. D., Bridgeman, T. B., & Bade, D. L. (2013). Nitrogen constrains the growth of Late Summer cyanobacterial blooms in Lake Erie. Advances in Microbiology, 03, 16–26. doi:10.4236/aim.2013.36A003
  • Che, Y., Ding, L., Qiu, J., Ji, Y., & Li, A. (2020). Conversion and Stability of New metabolites of Paralytic Shellfish toxins under different Temperature and pH Conditions. Journal of Agricultural and Food Chemistry, 68, 1427–1435. doi:10.1021/acs.jafc.9b07063
  • Dunkel, M. (2006). SuperNatural: A searchable database of available natural compounds. Nucleic Acids Research, 34, D678–D683. doi:10.1093/nar/gkj132
  • Ernst, M., Kang, K. B., Caraballo-Rodríguez, A. M., Nothias, L.-F., Wandy, J.,… van der Hooft, J. J. J. (2019). MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites, 9(7), 144. doi:10.3390/metabo9070144
  • Falkenberg, L. J., Bellerby, R. G. J., Connell, S. D., Fleming, L. E., Maycock, B. … Dupont, S. (2020). Ocean acidification and human health. International Journal of Environmental Research and Public Health, 17, 4563. doi:10.3390/ijerph17124563
  • Fu, W., Nelson, D. R., Mystikou, A., Daakour, S., & Salehi-Ashtiani, K. (2019). Advances in microalgal Research and engineering development. Current Opinion in Biotechnology, 59, 157–164. doi:10.1016/j.copbio.2019.05.013
  • Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., … Nishioka, T. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry: JMS, 45, 703–714. doi:10.1002/jms.1777.
  • Hort, V., Abadie, E., Arnich, N., Bottein, M.-Y. D., & Amzil, Z. (2021). Chemodiversity of Brevetoxins and other potentially toxic metabolites produced by Karenia spp. and their metabolic products in marine organisms. Marine Drugs, 19, 656. doi:10.3390/md19120656
  • Hwang, S.-W., Choi, H. I., & Sim, S. J. (2019). Acidic cultivation of Haematococcus pluvialis for improved astaxanthin production in the presence of a lethal fungus. Bioresource Technology, 278, 138–144. doi:10.1016/j.biortech.2019.01.080
  • Liska, A. J., Shevchenko, A., Pick, U., & Katz, A. 2004 Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiology, 136, 2806–2817. doi:10.1104/pp.104.039438
  • Li, J., Zhang, J., Huang, W., Kong, F., Li, Y., Xi, M., & Zheng, Z. (2016). Comparative bioavailability of ammonium, nitrate, nitrite and urea to typically harmful cyanobacterium Microcystis aeruginosa. Marine Pollution Bulletin, 110, 93–98. doi:10.1016/j.marpolbul.2016.06.077
  • MarinLit. (2021). A database of the marine natural products literature. Retrieved from http://pubs.rsc.org/marinlit/
  • Mehar, M. U. N., Mudliar, J. G., Shekh, S. N., & Shekh, A. Y. (2019). Recent advances in microalgal bioactives for food, feed, and healthcare products: Commercial potential, market space, and sustainability. Comprehensive Reviews In Food Science And Food Safety, 18, 1882–1897. doi:10.1111/1541-4337.12500
  • Morel, F. M. M., Rueter, J. G., Anderson, D. M., & Guillard, R. R. L. (1979). Aquil: a chemically defined phytoplankton culture medium for trace metal studies. Journal of Phycology, 15, 135–141. doi:10.1111/j.1529-8817.1979.tb02976.x
  • Nagappan, S., Devendran, S., Tsai, P.-C., Jayaraman, H., Alagarsamy, V., Pugazhendhi, A., & Ponnusamy, V. K. (2020). Metabolomics Integrated with transcriptomics and proteomics: Evaluation of systems reaction to nitrogen deficiency stress in microalgae. Process Biochemistry, 91, 1–14. doi:10.1016/j.procbio.2019.11.027
  • Nothias, L.-F., Nothias-Esposito, M., da Silva, R., Wang, M., Protsyuk, I. , and Dorrestein, P. C. (2018). Bioactivity-based molecular networking for the discovery of drug leads in natural product Bioassay-Guided Fractionation. Journal of Natural Products, 81, 758–767. doi:10.1021/acs.jnatprod.7b00737
  • Nymark, M., Sharma, A. K., Sparstad, T., Bones, A. M., & Winge, P. (2016). A CRISPR/Cas9 system adapted for gene editing in marine algae. Scientific Reports, 6, 24951. doi:10.1038/srep24951
  • Pacific Ocean | Depth. (2021). Temperature, Animals, Location, Map, & Facts. Retrieved from https://www.britannica.com/place/Pacific-Ocean.
  • Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). Mzmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395. doi:10.1186/1471-2105-11-395
  • Poliner, E., Pulman, J. A., Zienkiewicz, K., Childs, K., Benning, C., & Farré, E. M. (2018). A toolkit for Nannochloropsis oceanica CCMP 1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced Long‐chain polyunsaturated fatty acid production. Plant Biotechnology Journal, 16, 298–309. doi:10.1111/pbi.12772
  • Renaud, S. M., & Parry, D. L. (1994). Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. Journal of Applied Phycology, 6, 347–356. doi:10.1007/BF02181949
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., & Schwikowski, B. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504. doi:10.1101/gr.1239303
  • Smayda, T. J. (2008). Complexity in the eutrophication–harmful algal bloom relationship, with comment on the importance of grazing. Harmful Algae, 8, 140–151. doi:10.1016/j.hal.2008.08.018
  • Tett, P., Droop, M. R., & Heaney, S. I. (1985). The Redfield ratio and phytoplankton growth rate. Journal of the Marine Biological Association of the United Kingdom, 65, 487–504. doi:10.1017/S0025315400050566
  • Teuma, L., Sanz-Luque, E., Guieysse, B., & Plouviez, M. (2023). Are microalgae new players in nitrous oxide emissions from eutrophic aquatic environments? Phycology, 3, 356–367. doi:10.3390/phycology3030023
  • Wandy, J., Zhu, Y., van der Hooft, J. J. J., Daly, R., Barrett, M. P., & Rogers, S. M. O. (2018). Web-based topic modelling for substructure discovery in mass spectrometry. Bioinformatics, 34, 317–318. doi:10.1093/bioinformatics/btx582
  • Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N. … Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nature Biotechnology, 34, 828–837. doi:10.1038/nbt.3597
  • Xi, Y., Kong, F., & Chi, Z. (2021). ROS induce β-carotene biosynthesis caused by changes of photosynthesis efficiency and energy metabolism in Dunaliella salina under stress conditions. Frontiers in Bioengineering and Biotechnology, 8, 613768. doi:10.3389/fbioe.2020.613768
  • Xu, Y., & Harvey, P. J. (2019). Carotenoid production by Dunaliella salina under red light. Antioxidants, 8, 123. doi:10.3390/antiox8050123