1,594
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Calcium acetate enhances both drought tolerance and arsenic accumulation in Pteris vittata

, , , &
Article: 2161947 | Received 19 Oct 2022, Accepted 19 Dec 2022, Published online: 27 Dec 2022

References

  • Abou-Shanab RAI, Mathai PP, Santelli C, et al. Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species. Ecotoxicol Environ Saf. 2020;195:110458.
  • Cantamessa S, Massa N, Gamalero E, et al. Phytoremediation of a highly arsenic polluted site, using pteris vittata L. and arbuscular mycorrhizal fungi. Plants (Basel); 2020; 9:1211.
  • Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals–concepts and applications. Chemosphere. 2013;91(7):869–7.
  • Wang X, Peng B, Tan C, et al. Recent advances in arsenic bioavailability, transport, and speciation in rice. Environ Sci Pollut Res. 2015;22(8):5742–5750.
  • Zhu G, Liu W, Wen Y, et al. Potential of arsenate-reducing bacterial inoculants to enhance field-scale remediation of arsenic contaminated soils by Pteris vittata L. Ecol Eng. 2021;169:106312.
  • Lessl JT, Ma LQ. Sparingly-soluble phosphate rock induced significant plant growth and arsenic uptake by pteris vittata from three contaminated soils. Environ Sci Technol. 2013;47(10):5311–5318.
  • Ma LQ, Komar KM, Tu C, et al. A fern that hyperaccumulates arsenic. Nature. 2001;409(6820):579.
  • Yang J, Guo Y, Yan Y, et al. Phytoaccumulation of as by pteris vittata supplied with phosphorus fertilizers under different soil moisture regimes – a field case. Ecol Eng. 2019;138:274–280.
  • Liu Q, Yan X, Lin L, et al. Effects of soil moisture on phytoremediation of As-contaminated soils using As-hyperaccumulator Pteris vittata L. Environ. Sci. (in Chinese). 2015;36:3056–3061.
  • Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529(7584):84–87.
  • Yang J, Yan Y, Lu N, et al. The key nodes and main factors influencing accumulation of soil arsenic in Pteris vittata L. under field conditions. Sci Total Environ. 2022;807:150787.
  • Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci. 2015;72(4):673–689.
  • Tian K, Wang Y, Chen D, et al. Influence of drought stress and post-drought rewatering on phytoremediation effect of Arabidopsis thaliana. B. Environ. Contam. Tox. 2022;108(3):594–599.
  • Kim JM, To TK, Matsui A, et al. Acetate-mediated novel survival strategy against drought in plants. Nat Plants. 2017;3(7):17097.
  • Rasheed S, Bashir K, Kim J-M, et al. The modulation of acetic acid pathway genes in Arabidopsis improves survival under drought stress. Sci Rep. 2018;8(1):7831.
  • Ogawa D, Suzuki Y, Yokoo T, et al. Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Sci Rep. 2021;11(1):6280.
  • Utsumi Y, Utsumi C, Tanaka M, et al. Acetic acid treatment enhances drought avoidance in Cassava (Manihot esculenta Crantz). Front Plant Sci. 2019;10:521.
  • Fayiga AO, Ma LQ, Rathinasabapathi B. Effects of nutrients on arsenic accumulation by arsenic hyperaccumulator Pteris vittata L. Environ Exp Bot. 2008;62(3):231–237.
  • Song C, Ye F, Zhang H, et al. Metal(loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants. Environ.Pollut. 2019;255:113354.
  • Hua CY, Chen JX, Cao Y, et al. Pteris vittata coupled with phosphate rock effectively reduced As and Cd uptake by water spinach from contaminated soil. Chemosphere. 2020;247:125916.
  • Chen Y, Hua CY, Chen JX, et al. Expressing arsenite antiporter PvACR3;1 in rice (Oryza sativa L.) decreases inorganic arsenic content in rice grains. Environ Sci Technol. 2019;53(17):10062–10069.
  • Hudson-Edwards KA, Houghton SL, Osborn A. Extraction and analysis of arsenic in soils and sediments. Trends Analyt Chem. 2004;23(10–11):745–752.
  • Chen Y, Fu JW, Han YH, et al. High as exposure induced substantial arsenic efflux in as-hyperaccumulator Pteris vittata. Chemosphere. 2016;144:2189–2194.
  • Rahman MM, Mostofa MG, Keya SS, et al. Acetic acid improves drought acclimation in soybean: an integrative response of photosynthesis, osmoregulation, mineral uptake and antioxidant defense. Physiol Plant. 2020;172(2):334–350.
  • Allen MM, Allen DJ. Acetic acid is a low cost antitranspirant that increases begonia survival under drought stress. Sci Hortic. 2021;287:110257.
  • Allen MM, Allen DJ. Biostimulant potential of acetic acid under drought stress is confounded by pH-Dependent root growth inhibition. Front Plant Sci. 2020;11:11.
  • Rahman MM, Mostofa MG, Rahman MA, et al. Acetic acid: a cost-effective agent for mitigation of seawater-induced salt toxicity in mung bean. Sci Rep. 2019;9(1):15186.
  • Caille N, Swanwick S, Zhao FJ, et al. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Environ Pollut. 2004;132(1):113–120.
  • Zhong X, Chen Z, Li Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. J Hazard Mater. 2020;400:123289.
  • Fayiga AO, Ma LQ. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Sci Total Environ. 2006;359(1–3):17–25.
  • Salido AL, Hasty KL, Lim J-M, et al. Phytoremediation of Arsenic and Lead in Contaminated Soil Using Chinese Brake Ferns (Pteris vittata) and Indian Mustard (Brassica juncea). Int J Phytoremediation. 2003;5(2):89–103.
  • Shelmerdine PA, Black CR, McGrath SP, et al. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Environ Pollut. 2009;157(5):1589–1596.
  • Shen B, Wang X, Zhang Y, et al. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. Sci Total Environ. 2020;711:135229.
  • Tu S, Ma LQ. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot. 2003;50(3):243–251.
  • Honma T, Ohba H, Kaneko-Kadokura A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ Sci Technol. 2016;50(8):4178–4185.
  • Zhang S, Li W, Shan X-Q, et al. Effects of low molecular weight organic anions on the release of arsenite and arsenate from a contaminated soil. Water Air Soil Pollut. 2005;167(1–4):111–122.
  • Yan X, Zhang M, Liao X, et al. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L. Chemosphere. 2012;88(2):240–244.
  • Tu C, Ma LQ. Effects of Arsenic Concentrations and Forms on Arsenic Uptake by the Hyperaccumulator Ladder Brake. J Environ Qual. 2002;31:641–647.