1,725
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Abscisic acid modulates differential physiological and biochemical responses to cadmium stress in Brassica napus

, , , , , , , ORCID Icon, & show all
Article: 2168216 | Received 09 Nov 2022, Accepted 10 Jan 2023, Published online: 19 Jan 2023

References

  • Hossein-Khannazer N, Azizi G, Eslami S, et al. The effects of cadmium exposure in the induction of inflammation. Immunopharmacol Immunotoxicol. 2020;42(1):1–13.
  • Zheng Y, Xiao C, Chi R. Remediation of soil cadmium pollution by biomineralization using microbial-induced precipitation: a review. World J Microbiol Biotechnol. 2021;37(12):208.
  • Chen QY, DesMarais T, Costa M. Metals and mechanisms of carcinogenesis. Annu Rev Pharmacol Toxicol. 2019;59:537–554.
  • Rajendran S, Priya TAK, Khoo KS, et al. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere. 2022;287:132369.
  • Song Y, Wang Y, Mao W, et al. Dietary cadmium exposure assessment among the Chinese population. PLoS One. 2017;12(5):e0177978.
  • Javad S, Shah AA, Ramzan M, et al. Hydrogen sulphide alleviates cadmium stress in Trigonella foenum-graecum by modulating antioxidant enzymes and polyamine content. Plant Biol. 2022;24(4):618–626.
  • Hasanuzzaman M, Hossain MA, Fujita M. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res. 2012;149(2):248–261.
  • Liu W, Shang S, Feng X, et al. Modulation of exogenous selenium in cadmium-induced changes in antioxidative metabolism, cadmium uptake, and photosynthetic performance in the 2 tobacco genotypes differing in cadmium tolerance. Environ Toxicol Chem. 2015;34(1):92–99.
  • Chernikova N, Fedorenko A, Beschetnikov V, et al. Effect of cadmium and zinc in soil on the tissue-organ level of spring barley. Earth Environ Sci. 2021;862(1):012050.
  • Qin X, Nie Z, Liu H, et al. Influence of selenium on root morphology and photosynthetic characteristics of winter wheat under cadmium stress. Environ Exp Bot. 2018; 150:232–239.
  • Qian H, Li J, Sun L, et al. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat Toxicol. 2009;94(1):56–61.
  • Ren T, Chen N, Wan Mahari WA, et al. Biochar for cadmium pollution mitigation and stress resistance in tobacco growth. Environ Res. 2021;192:110273.
  • Muradoglu F, Gundogdu M, Ercisli S, et al. Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol Res. 2015;48(1):1–7.
  • Naciri R, Lahrir M, Benadis C, et al. Interactive effect of potassium and cadmium on growth, root morphology and chlorophyll a fluorescence in tomato plant. Sci Rep. 2021;11(1):1–10.
  • Yu Z, Duan X, Luo L, et al. How plant hormones mediate salt stress responses. Trends Plant Sci. 2020;25(11):1117–1130.
  • Raza A, Mehmood SS, Tabassum J, et al. Targeting plant hormones to develop abiotic stress resistance in wheat. In: Hasanuzzaman, M, Nahar, K, Hossain, MA, editors. Wheat production in changing environments. Singapore: Springer; 2019. p. 557–577.
  • Chen K, Li GJ, Bressan RA, et al. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol. 2020;62(1):25–54.
  • Mittler R, Blumwald E. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell. 2015;27(1):64–70.
  • Shen G, Niu J, Deng Z. Abscisic acid treatment alleviates cadmium toxicity in purple flowering stalk (Brassica campestris L. ssp. chinensis var. purpurea Hort.) seedlings. Plant Physiol Biochem. 2017;118:471–478.
  • Tao Q, Jupa R, Dong Q, et al. Abscisic acid-mediated modifications in water transport continuum are involved in cadmium hyperaccumulation in Sedum alfredii. Chemosphere. 2021;268:129339.
  • Cabot C, Sibole JV, Barceló J, et al. Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul. 2009;28(2):187–192.
  • Leng Y, Li Y, Ma YH, et al. Abscisic acid modulates differential physiological and biochemical responses of roots, stems, and leaves in mung bean seedlings to cadmium stress. Environ Sci Pollut Res Int. 2021;28(5):6030–6043.
  • You C, Li C, Ma M, et al. A C2-domain abscisic acid-related gene, IbCAR1, positively enhances salt tolerance in sweet potato (Ipomoea batatas (L.) Lam.). Int J Mol Sci. 2022;23(17):9680.
  • Yao XM, Ji J, Yue JY, et al. Exogenous abscisic acid modulates reactive oxygen metabolism and related gene expression in Platycladus orientalis under H2O2-induced stress. Russ J Plant Physiol. 2020;67(1):85–93.
  • Rizwan M, Ali S, Adrees M, et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere. 2017;182:90–105.
  • Meng H, Hua S, Shamsi IH, et al. Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regul. 2009;58(1):47–59.
  • Bao SD. Soil agrochemical analysis. Beijing (BJ): China Agricultural Press; 2000. p. 370–404.
  • Wu X, Song H, Guan C, et al. Boron alleviates cadmium toxicity in Brassica napus by promoting the chelation of cadmium onto the root cell wall components. Sci Total Environ. 2020;728:138833.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods. 2001;25(4):402–408.
  • Kumar S, Shah SH, Vimala Y, et al. Abscisic acid: metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Front Plant Sci. 2022;13:972856.
  • Pan W, You Y, Shentu JL, et al. Abscisic acid (ABA)-importing transporter 1 (AIT1) contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis. J Hazard Mater. 2020;391:122189.
  • Li SW, Leng Y, Feng L, et al. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress. Environ Sci Pollut Res Int. 2014;21(1):525–537.
  • Han Y, Wang S, Zhao N, et al. Exogenous abscisic acid alleviates cadmium toxicity by restricting Cd2+ influx in Populus euphratica cells. J Plant Growth Regul. 2016;35(3):827–837.
  • Paunov M, Koleva L, Vassilev A, et al. Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int J Mol Sci. 2018;19(3):787.
  • Liu L, Ma Q, Lin L, et al. Effects of exogenous abscisic acid on cadmium accumulation in two ecotypes of hyperaccumulator Bidens pilosa. Environ Prog Sustainable Energy. 2017;36(6):1643–1649.
  • Chen X, Tao H, Wu Y, et al. Effects of Cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis. Sci Hortic. 2022;305:111371.
  • Tang Y, Wang L, Xie Y, et al. Effects of exogenous abscisic acid on the growth and cadmium accumulation of lettuce under cadmium-stress conditions. Int J Environ Anal Chem. 2020;100(6):720–731.
  • Hsu PK, Dubeaux G, Takahashi Y, et al. Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J. 2021;105(2):307–321.
  • Huang H, Li M, Rizwan M, et al. Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. J Hazard Mater. 2021;401:123393.
  • Meng Y, Huang J, Jing H, et al. Exogenous abscisic acid alleviates Cd toxicity in Arabidopsis thaliana by inhibiting Cd uptake, translocation and accumulation, and promoting Cd chelation and efflux. Plant Sci. 2022;325:111464.
  • Fan SK, Fang XZ, Guan MY, et al. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Front Plant Sci. 2014;5:721.
  • Hsu YT, Kao CH. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ. 2003;26(6):867–874.
  • Zhu Q, Li Y, Gao S, et al. Praseodymium enhanced the tolerance of maize seedlings subjected to cadmium stress by up-regulating the enzymes in the regeneration and biosynthetic pathways of ascorbate and glutathione. Plant Soil Environ. 2021;67(11):633–642.
  • Nahar K, Hasanuzzaman M, Alam M, et al. Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf. 2016;126:245–255.
  • Adhikari S, Ghosh S, Azahar I, et al. Sulfate improves cadmium tolerance by limiting cadmium accumulation, modulation of sulfur metabolism and antioxidant defense system in maize. Environ Exp Bot. 2018;153:143–162.
  • Chen F, Wang F, Sun H, et al. Genotype-dependent effect of exogenous nitric oxide on Cd-induced changes in antioxidative metabolism, ultrastructure, and photosynthetic performance in barley seedlings (Hordeum vulgare). J Plant Growth Regul. 2010;29(4):394–408.
  • Zhang C, Shi S. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front Plant Sci. 2018;9:242.
  • Han Y, Fan T, Zhu X, et al. WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis. Plant Mol Biol. 2019;99(1):149–159.
  • Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 2006;88(11):1707–1719.
  • Guo J, Dai X, Xu W, et al. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere. 2008;72(7):1020–1026.
  • Rahman MF, Ghosal A, Alam MF, et al. Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon. Ecotoxicol Environ Saf. 2017;135:165–172.
  • Abdel-Ghany SE, Burkhead JL, Gogolin KA, et al. AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Lett. 2005;579(11):2307–2312.
  • Skopp A, Boyd SD, Ullrich MS, et al. Copper-zinc superoxide dismutase (Sod1) activation terminates interaction between its copper chaperone (Ccs) and the cytosolic metal-binding domain of the copper importer Ctr1. Biometals. 2019;32(4):695–705.
  • Attia H, Karray N, Msilini N, et al. Effect of salt stress on gene expression of superoxide dismutases and copper chaperone in Arabidopsis thaliana. Biol Plant. 2011;55(1):159–163.
  • Sharma I, Sharma A, Pati P, et al. Brassinosteroids reciprocates heavy metals induced oxidative stress in radish by regulating the expression of key antioxidant enzyme genes. Braz Arch Biol Technol. 2018;61:1–17.
  • Xing Y, Jia W, Zhang J. AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. J Exp Bot. 2007;58(11):2969–2981.
  • Du YY, Wang PC, Chen J, et al. Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol. 2008;50(10):1318–1326.
  • Surgun-Acar Y, Zemheri-Navruz F. 24-Epibrassinolide promotes arsenic tolerance in Arabidopsis thaliana L. by altering stress responses at biochemical and molecular level. J Plant Physiol. 2019;238:12–19.