2,140
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Effect of cadmium exposure during and after pregnancy of female

, , , , , & show all
Article: 2181124 | Received 20 Dec 2022, Accepted 13 Feb 2023, Published online: 16 Feb 2023

References

  • Ali W, Ma Y, Zhu J, et al. Mechanisms of Cadmium-induced testicular injury: a risk to male fertility. Cells. 2022;11(22):3601.
  • Zhao L-L, Ru Y-F, Liu M, et al. Reproductive effects of cadmium on sperm function and early embryonic development in vitro. PloS one. 2017;12(11):e0186727.
  • de Angelis C, Galdiero M, Pivonello C, et al. The environment and male reproduction: the effect of cadmium exposure on reproductive function and its implication in fertility. Reprod Toxicol. 2017;73:105–8.
  • Godt J, Scheidig F, Grosse-Siestrup C, et al. The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol. 2006;1(1):1–6.
  • Järup L, Åkesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238(3):201–208.
  • Duan Y, Zhao Y, Wang T, et al. Taurine alleviates Cadmium-Induced hepatotoxicity by regulating autophagy flux. Int J Mol Sci. 2023;24(2):1205.
  • Zalups RK, Ahmad S. Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol. 2003;186(3):163–188.
  • Kumar S, Sharma A. Cadmium toxicity: effects on human reproduction and fertility. Rev Environ Health. 2019;34(4):327–338.
  • Nishijo M, Nakagawa H, Suwazono Y, et al. Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case–control analysis of a follow-up study in Japan. BMJ open. 2017;7(7):e015694.
  • Cadmium BA. its adverse effects on human health. Indian J Med Res. 2008;128(4):557.
  • Zou H, Chen Y, Qu H, et al. Microplastics exacerbate Cadmium-Induced kidney injury by enhancing oxidative stress, autophagy, apoptosis, and fibrosis. Int J Mol Sci. 2022;23(22):14411.
  • Ma Y, Su Q, Yue C, et al. The effect of oxidative stress-induced autophagy by cadmium exposure in kidney, liver, and bone damage, and neurotoxicity. Int J Mol Sci. 2022;23(21):13491.
  • Alissa EM, Ferns GA. Heavy metal poisoning and cardiovascular disease. Journal of toxicology. 2011;2011(2011): 870125.
  • Olaolu T. Effect of cadmium on female reproduction and treatment options. Res J Obstet. Gynecol. 2018;11(1): 41–48.
  • Nampoothiri LP, Gupta S. Simultaneous effect of lead and cadmium on granulosa cells: a cellular model for ovarian toxicity. Reprod Toxicol. 2006;21(2):179–185.
  • Manna PR, Stetson CL, Slominski AT, et al. Role of the steroidogenic acute regulatory protein in health and disease. Endocrine. 2016;51(1):7–21.
  • Monsefi M, Fereydouni B. The effects of cadmium pollution on female rat reproductive system. J Infertil Reprod Biol. 2013;1(1):1–6.
  • Wang Y, Wang X, Wang Y, et al. Effect of cadmium on cellular ultrastructure in mouse ovary. Ultrastruct Pathol. 2015;39(5):324–328.
  • Zhang W, Pang F, Huang Y, et al. Cadmium exerts toxic effects on ovarian steroid hormone release in rats. Toxicol Lett. 2008;182(1–3):18–23.
  • Takiguchi M, Yoshihara S. New aspects of cadmium as endocrine disruptor. Environ Sci. 2006;13(2):107–116.
  • Chen L, Liu L, Huang S. Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic Biol Med. 2008;45(7):1035–1044.
  • Massányi P, Massányi M, Madeddu R, et al. Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics. 2020;8(4):94.
  • Pollack AZ, Ranasinghe S, Sjaarda LA, et al. Cadmium and reproductive health in women: a systematic review of the epidemiologic evidence. Curr Environ Health Rep. 2014;1(2):172–184.
  • Atalay C, Kanlioz M, Altinok M. Menstrual cycle and hormone receptor status in breast cancer patients. Neoplasma. 2002;49(4):278–284.
  • Legro RS. Polycystic ovary syndrome and cardiovascular disease: a premature association? Endocr Rev. 2003;24(3):302–312.
  • Studen KB, Pfeifer M. Cardiometabolic risk in polycystic ovary syndrome. Endocr Connect. 2018;7(7):R238–R251.
  • Baron JA, La Vecchia C, Levi F. The antiestrogenic effect of cigarette smoking in women. Am J Obstet Gynecol. 1990;162(2):502–514.
  • Parente RC, Faerstein E, Celeste RK, et al. The relationship between smoking and age at the menopause: a systematic review. Maturitas. 2008;61(4):287–298.
  • Zhou B, Yang L, Sun Q, et al. Cigarette smoking and the risk of endometrial cancer: a meta-analysis. Am J Med. 2008; e3. 121(6):501–508.
  • Johnson MD, Kenney N, Stoica A, et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med. 2003;9(8):1081–1084.
  • Priya P, Pillai A, Gupta S. Effect of simultaneous exposure to lead and cadmium on gonadotropin binding and steroidogenesis on granulosa cells: an in vitro study. Indian journal of experimental biology. 2004;42(2): 143–8.
  • Wang X, Tian J. Health risks related to residential exposure to cadmium in Zhenhe County, China. Arch Environ Health. 2004;59(6):324–330.
  • Laudanski T, Sipowicz M, Modzelewski P, et al. Influence of high lead and cadmium soil content on human reproductive outcome. Int J Gynecol Obstet. 1991;36(4):309–315.
  • Fagher U, Laudanski T, Schütz A, et al. The relationship between cadmium and lead burdens and preterm labor. Int J Gynecol Obstet. 1993;40(2):109–114.
  • Windham GC, Mitchell P, Anderson M, et al. Cigarette smoking and effects on hormone function in premenopausal women. Environ Health Perspect. 2005;113(10):1285–1290.
  • Kato I, Toniolo P, Koenig KL, et al. Epidemiologic correlates with menstrual cycle length in middle aged women. Eur J Epidemiol. 1999;15(9):809–814.
  • Rowland AS, Baird DD, Long S, et al. Influence of medical conditions and lifestyle factors on the menstrual cycle. Epidemiology. 2002. p. 668–674.
  • Liu Y, Gold EB, Lasley BL, et al. Factors affecting menstrual cycle characteristics. Am J Epidemiol. 2004;160(2):131–140.
  • Jackson L, Howards P, Wactawski-Wende J, et al. The association between cadmium, lead and mercury blood levels and reproductive hormones among healthy, premenopausal women. Hum Reprod. 2011;26(10):2887–2895.
  • Ikeh-Tawari EP, Anetor JI, Charles-Davies M. Cadmium level in pregnancy, influence on neonatal birth weight and possible amelioration by some essential trace elements. Toxicol Int. 2013;20(1):108.
  • Kaur M, Sharma P, Kaur R, et al. Increased incidence of spontaneous abortions on exposure to cadmium and lead: a systematic review and meta-analysis. Gynecological Endocrinol. 2022;38(1):16–21.
  • Yıldırım E, Derici MK. The effect of heavy metals on miscarriage. Journal of Clinical Obstetrics & Gynecology. 2019;29(1): 31–8.
  • Espart A, Artime S, Tort-Nasarre G, et al. Cadmium exposure during pregnancy and lactation: materno-fetal and newborn repercussions of Cd (II), and Cd–metallothionein complexes. Metallomics. 2018;10(10):1359–1367.
  • Gundacker C, Hengstschläger M. The role of the placenta in fetal exposure to heavy metals. Wiener medizinische wochenschrift. 2012;162(9):201–206.
  • Alvarez MM, Chakraborty C. Cadmium inhibits motility factor-dependent migration of human trophoblast cells. Toxicol in vitro. 2011;25(8):1926–1933.
  • Jie O, Peng P, Qiu L, et al. Biomarkers of metal toxicity in embryos in the general population. J Clin Lab Anal. 2019;33(8):e22974.
  • Agarwal A, Aponte-Mellado A, Premkumar BJ, et al. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10(1):1–31.
  • Valko M, Morris H, Cronin M. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–1208.
  • Gonzalez-Nahm S, Nihlani K,S, House J, et al. Associations between maternal cadmium exposure with risk of preterm birth and low after birth weight effect of Mediterranean diet adherence on affected prenatal outcomes. Toxics. 2020;8(4): 90
  • Masumoto T, Amano H, Otani S, et al. Association between prenatal cadmium exposure and child development: the Japan environment and children’s study. Int J Hyg Environ Health. 2022;243:113989.
  • Grandjean P, Budtz-Jørgensen E, Jørgensen PJ, et al. Umbilical cord mercury concentration as biomarker of prenatal exposure to methylmercury. Environ Health Perspect. 2005;113(7):905–908.
  • Baranowska I. Lead and cadmium in human placentas and maternal and neonatal blood (in a heavily polluted area) measured by graphite furnace atomic absorption spectrometry. Occup Environ Med. 1995;52(4):229–232.
  • Osman K, Åkesson A, Berglund M, et al. Toxic and essential elements in placentas of Swedish women. Clin Biochem. 2000;33(2):131–138.
  • Baghurst PA, Robertson EF, Oldfield RK, et al. Lead in the placenta, membranes, and umbilical cord in relation to pregnancy outcome in a lead-smelter community. Environ Health Perspect. 1991;90:315.
  • Semczuk M, Semczuk-Sikora A. New data on toxic metal intoxication (Cd, Pb, and Hg in particular) and Mg status during pregnancy. Med Sci Monit. 2001;7(2):332–340.
  • Wright RO, Amarasiriwardena C, Woolf AD, et al. Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology. 2006;27(2):210–216.
  • Wasserman G, Liu X, Popovac D, et al. The Yugoslavia Prospective Lead Study: contributions of prenatal and postnatal lead exposure to early intelligence. Neurotoxicol Teratol. 2000;22(6):811–818.
  • Ris MD, Dietrich KN, Succop PA, et al. Early exposure to lead and neuropsychological outcome in adolescence. J Int Neuropsychol Soc. 2004;10(2):261–270.
  • Nishijo M, Nakagawa H, Honda R, et al. Effects of maternal exposure to cadmium on pregnancy outcome and breast milk. Occup Environ Med. 2002;59(6):394–397.
  • Needleman H. Lead-associated intellectual deficit. New Engl J Med. 1982;306:367.
  • Faust D, Brown J. Moderately elevated blood lead levels: effects on neuropsychologic functioning in children. Pediatrics. 1987;80(5):623–629.
  • Bhargava M, Iyer PU, Kumar R, et al. Relationship of maternal serum ferritin with foetal serum ferritin, birth weight and gestation. J Trop Pediatr. 1991 Aug;37(4):149–152.
  • Barker DJ, Hales CN, Fall CH, et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993 Jan;36(1):62–67.
  • Hogervorst J, Plusquin M, Vangronsveld J, et al. House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ Res. 2007 Jan;103(1):30–37.
  • Fay RM, Mumtaz MM. Development of a priority list of chemical mixtures occurring at 1188 hazardous waste sites, using the HazDat database. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association. 1996 Nov-Dec; 34 (11–12): 1163–1165.
  • Singh PP, Khushlani K, Veerwal PC, et al. Maternal hypozincemia and low-birth-weight infants. Clin Chem. 1987 Oct;33(10):1950.
  • Sorkun HC, Bir F, Akbulut M, et al. The effects of air pollution and smoking on placental cadmium, zinc concentration and metallothionein expression. Toxicology. 2007 Aug 16;238(1):15–22.
  • Peraza MA, Ayala-Fierro F, Barber DS, et al. Effects of micronutrients on metal toxicity. Environ Health Perspect. 1998 Feb;106(Suppl 1):203–216.
  • Berg JM. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Bio Chem. 1990 Apr 25;265(12):6513–6516.
  • Milman N, Ibsen KK, Christensen JM. Serum ferritin and iron status in mothers and newborn infants. Acta Obstet Gynecol Scand. 1987;66(3):205–211.
  • Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr. 2001 Feb;131(2s–2):568S–579S. discussion 580S.
  • Silverman J, Katayama S, Zelenakas K, et al. Effect of retinoids on the induction of colon cancer in F344 rats by N-methyl-N-nitrosourea or by 1,2-dimethylhydrazine. Carcinogenesis. 1981;2(11):1167–1172.
  • Krachler M, Rossipal E, Micetic-Turk D. Trace element transfer from the mother to the newborn–investigations on triplets of colostrum, maternal and umbilical cord sera. Eur J Clin Nutr. 1999 Jun;53(6):486–494.
  • Araujo-Padilla X, Briseño-Bugarín J, López-Luna A, et al. Effects of Cadmium exposure on lactating mice and rats: a systematic review of breastfeeding experiments. Appl Sci. 2022;12(22):11412.
  • Andersson H, Petersson-Grawé K, Lindqvist E, et al. Low-level cadmium exposure of lactating rats causes alterations in brain serotonin levels in the offspring. Neurotoxicol Teratol. 1997;19(2):105–115.
  • Halder S, Kar R, Galav V, et al. Cadmium exposure during lactation causes learning and memory-impairment in F1 generation mice: amelioration by quercetin. Drug Chem Toxicol. 2016;39(3):272–278.
  • Grawé KP, Pickova J, Dutta PC, et al. Fatty acid alterations in liver and milk of cadmium exposed rats and in brain of their suckling offspring. Toxicol Lett. 2004;148(1–2):73–82.
  • Slyuzova O, Stepanova E, Temraleeva A, et al. Effects of prenatal and neonatal cadmium intoxication on the intensity of lipid peroxidation and activity of glutathione system in progeny of albino rats. Bull Exp Biol Med. 2008;146(1):41.
  • Friedrichi C, Lopes RA, Sala MA, et al. Efectos del Cadmio Sobre las Glándulas Salivales de Rata, Durante la Lactancia. Int J Morpho. 2009;27(4): 1129–1137
  • Ribas P, Lopes RA, Sala MA, et al. Effect of Cadmium on rat maxillary molar junctional epithelium during lactation: Efecto Del Cadmio Sobre El Epitelio De La Zona De Unión Maxilo-Molar De Ratas Durante La Lactancia. Int J Morpho. 2004;22(4): 257–262
  • Lara CP, Watanabe I-S, Lopes RA, et al. Efectos del cadmio en la mucosa yugal de la rata durante la lactancia. Estudio morfológico e histométrico. Int J Morpho. 2003;21(3): 191–198
  • Pillet S, Rooney AA, Bouquegneau J-M, et al. Sex-specific effects of neonatal exposures to low levels of cadmium through maternal milk on development and immune functions of juvenile and adult rats. Toxicology. 2005;209(3):289–301.
  • Petersson Grawé K, Oskarsson A. Cadmium in milk and mammary gland in rats and mice. Arch Toxicol. 2000;73(10):519–527.