1,237
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The potential of berula erecta in vitro for As bioaccumulation and phytoremediation of water environments

, , , , , & show all
Article: 2205010 | Received 17 Jan 2023, Accepted 15 Apr 2023, Published online: 26 Apr 2023

References

  • Ng J. Arsenic and arsenic compounds. 2nd ed. Geneva: World health organization; 2001.
  • Ali W, Rasool A, Junaid M, et al. A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario. Environ Geochem Health. 2019;41(2):737–12.
  • Teršič T, Miler M, Gaberšek M, et al. Vsebnosti arzena in nekaterih drugih prvin v potočnih sedimentih in vodah porečja medije, osrednja slovenija= contents of arsenic and some other elements in stream sediments and waters of the medija drainage basin, central Slovenia. Geologija. 2018;61(1):5–24.
  • Mazej Z, Germ M. Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere. 2009;74(5):642–647.
  • Šajn R, Gosar M. An overview of some localities in Slovenia that became polluted due to past mining and metallurgic activities. Geologija. 2004;47(2):249–258.
  • Chou CH, Harper C. Toxicological profile for arsenic. ATSDR case stud environ med: arsenic toxic. 2007;2009:1–124.
  • Souri Z, Karimi N, Sandalio LM. Arsenic hyperaccumulation strategies: an overview. Front Cell Dev Biol. 2017;5:67.
  • Tchounwou PB, Yedjou CG, Patlolla AK, et al. Heavy metal toxicity and the environment. In: Luch A, editor. Molecular, clinical and environmental toxicology [Internet]. Basel: Springer Basel; 2012[cited 2023 Jan 12]. p. 133–164. Available from: http://link.springer.com/10.1007/978-3-7643-8340-4_6
  • Dastgiri S, Mosaferi M, Fizi MA, et al. Arsenic exposure, dermatological lesions, hypertension, and chromosomal abnormalities among people in a rural community of Northwest Iran. J Health Popul Nutr. 2010;28(1):14–22.
  • Ansone L, Klavins M, Viksna A. Arsenic removal using natural biomaterial-based sorbents. Environ Geochem Health. 2013;35(5):633–642.
  • Tripathi P, Mishra A, Dwivedi S, et al. Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf. 2012;79:189–198.
  • Norton GJ, Lou-Hing DE, Meharg AA, et al. Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot. 2008;59(8):2267–2276.
  • Asgher M, Choudhary SA, Sehar Z, et al. Hydrogen peroxide modulates activity and expression of antioxidant enzymes and protects photosynthetic activity from arsenic damage in rice (Oryza sativaL.). J Hazard Mater. 2020;401:123365.
  • Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155(1):2–18.
  • Zhao FJ, McGrath SP, Meharg AA. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol. 2010;61(1):535–559.
  • Noctor G, Mhamdi A, Chaouch S, et al. Glutathione in plants: an integrated overview: glutathione status and functions. Plant Cell Environ. 2012;35(2):454–484.
  • Chakrabarty D, Trivedi PK, Misra P, et al. Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere. 2009;74(5):688–702.
  • Leterrier M, Airaki M, Palma JM, et al. Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ Pollut. 2012;166:136–143.
  • Souza TD, Borges AC, Braga AF, et al. Phytoremediation of arsenic-contaminated water by lemna valdiviana: an optimization study. Chemosphere. 2019;234:402–408.
  • Alvarado S, Guédez M, Lué-Merú MP, et al. Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (eichhornia crassipes) and lesser duckweed (Lemna minor). Bioresour Technol. 2008;99(17):8436–8440.
  • da-Silva CJ, Canatto RA, Cardoso AA, et al. Arsenic-hyperaccumulation and antioxidant system in the aquatic macrophyte Spirodela intermedia W koch (lemnaceae). Theor Exp Plant Physiol. 2017;29(4):203–213.
  • Ferreira AD, Viana DG, Pires FR, et al. Arsenic phytoremediation in contaminated and flooded soil: accumulation and translocation in two macrophytes. Water Air Soil Pollut. 2021;232(7):299.
  • Vandana UK, Gulzar ABM, Singha LP, et al. Hyperaccumulation of arsenic by Pteris vittata, a potential strategy for phytoremediation of arsenic-contaminated soil. Environ Sustain. 2020;3(2):169–178.
  • Praveen A, Pandey VC. Pteridophytes in phytoremediation. Environ Geochem Health. 2020;42(8):2399–2411.
  • Zemanová V, Pavlíková D, Hnilička F, et al. Arsenic toxicity-induced physiological and metabolic changes in the shoots of pteris cretica and spinacia oleracea. Plants. 2021;10(10):2009.
  • Zemanová V, Popov M, Pavlíková D, et al. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator pteris cretica (L.) var Albo-lineata. Bmc Plant Biol. 2020;20(1):130.
  • Singh S, Karwadiya J, Srivastava S, et al. Potential of indigenous plant species for phytoremediation of arsenic contaminated water and soil. Ecol Eng. 2022;175:106476.
  • Roy D, Sreekanth D, Pawar D, et al. Phytoremediation of arsenic contaminated water using aquatic, semi-aquatic and submerged weeds. In: Biodegradation technology of organic and inorganic pollutants. IntechOpen.Publishing; 2020 [cited 2023 Jan 12]. pp. 159–186. Available from: http://link.springer.com/10.1007/978-3-030-34694-2_9
  • Yap CK, Fitri M, Mazyhar Y, et al. Effects of metal contaminated soils on the accumulation of heavy metals in different parts of centella asiatica: a laboratory study. Sains Malays. 2010;39:347–352.
  • Saadaoui W, Mokrani K, Tarchoun N. Assessment of lead, copper and cadmium tolerance by four vegetable species. Am Acad Sci Res J Eng Technol Sci. 2018;47:76–87.
  • Tapia J, Cornejo J, Gutiérrez M, et al. Study of the copper, chromium, manganese and zinc contents in the species azorella spinosa (apiaceae), collected in the maule Region, Chile. J Environ Prot. 2019;10:601–613.
  • Mechora Š, Sotler M, Krajnc AU, et al. How selenium affects berula erecta. Water Air Soil Pollut. 2016;227:451.
  • Mechora Š, Rižnik T, Urbanek Krajnc A, et al. Response of berula erecta to lead in combination with selenium. Bull Environ Contam Toxicol. 2020;105:51–61.
  • Berula Erecta IUCN: de Belair G & Lansdown RV. The IUCN red list of threatened species 2013: e.T164378A13575878 [internet]. Int Union Conserv Nature. 2012[cited 2023 Jan 12]. Available from: http://www.iucnredlist.org/details/164378/0
  • Kuhar U, Gregorc T, Renčelj M, et al. Distribution of macrophytes and condition of the physical environment of streams flowing through agricultural landscape in north-eastern slovenia. Limnologica. 2007;37:146–154.
  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473–497.
  • Finnegan PM, Chen W. Arsenic toxicity: the effects on plant metabolism. Front Physiol. 2012[[cited 2023 Jan 12]];pp. 3. Available from: http://journal.frontiersin.org/article/10.3389/fphys.2012.00182/abstract
  • Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED Caldwell M, editors. Ecophysiol photosynth [internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1995[cited 2023 Jan 12]pp. 49–70. Available from: http://link.springer.com/10.1007/978-3-642-79354-7_3
  • Lichtenthaler HK, Buschmann C. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem. 2001;1:F4.3.1–4.3.8.
  • Drumm H, Mohr H The mode of interaction between blue (uv) light photoreceptor and phytochrome in anthocyanin formation of the sorghum seedling. Annual of European Symposium Photomorphogenesis [Internet]. Elsevier; 1978 [cited 2023 Jan 12]. p. 241–248. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780080226774500253.
  • Tausz M. Measuring antioxidants in tree species in the natural environment: from sampling to data evaluation. J Exp Bot. 2003;54:1505–1510.
  • Zhang J, Hamza A, Xie Z, et al. Arsenic transport and interaction with plant metabolism: clues for improving agricultural productivity and food safety. Environ Pollut. 2021;290:117987.
  • Chen W, Chi Y, Taylor NL, et al. Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidial lipoamide dehydrogenase, confers arsenate hypersensitivity in arabidopsis. Plant Physiol. 2010;153:1385–1397.
  • Tu S, Ma LQ. Interactive effects of pH, arsenic and phosphorus on uptake of as and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot. 2003;50:243–251.
  • Mechora Š, Žerdoner Čalasan A, Felicijan M, et al. The impact of selenium treatment on some physiological and antioxidant properties of apium repens. Aquat Bot. 2017;138:16–23.
  • Rathoure AK, editor. Handbook of research on waste diversion and minimization technologies for the industrial sector. Hershey, PA: Engineering Science Reference, an imprint of IGI Global; 2021.
  • Gunes A, Inal A, Bagci EG, et al. Combined effect of arsenic and phosphorus on mineral element concentrations of sunflower. Commun Soil Sci Plant Anal. 2010;41:361–372.
  • Stoeva N, Berova M, Zlatev Z. Effect of arsenic on some physiological parameters in bean plants. Biol Plant. 2005;49:293–296.
  • Kofroňová M, Hrdinová A, Mašková P, et al. Strong antioxidant capacity of horseradish hairy root cultures under arsenic stress indicates the possible use of Armoracia rusticana plants for phytoremediation. Ecotoxicol Environ Saf. 2019;174:295–304.
  • Williams PN, Lei M, Sun G, et al. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: hunan, China. Environ Sci Technol. 2009;43:637–642.
  • Zhu YG, Williams PN, Meharg AA. Exposure to inorganic arsenic from rice: a global health issue? Environ Pollut. 2008;154:169–171.
  • Ahmad P, Alyemeni MN, Al-Huqail AA, et al. Zinc oxide nanoparticles application alleviates arsenic (As) toxicity in soybean plants by restricting the uptake of as and modulating key biochemical attributes, antioxidant enzymes, ascorbate-glutathione cycle and glyoxalase system. Plants. 2020;9:825.
  • Zhang F, Gu F, Yan H, et al. Effects of soaking process on arsenic and other mineral elements in brown rice. Food Sci Hum Wellness. 2020;9:168–175.
  • Chandrakar V, Naithani SC, Keshavkant S. Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: a review. Biologia. 2016;71:367–377.
  • Bali AS, Sidhu GPS. Arsenic acquisition, toxicity and tolerance in plants - from physiology to remediation: a review. Chemosphere. 2021;283:131050.
  • Tangahu BV, Sheikh Abdullah SR, Basri H, et al. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. 2011;2011:1–31.
  • Zhao FJ, Ma JF, Meharg AA, et al. Arsenic uptake and metabolism in plants. New Phytol. 2009;181:777–794.
  • Dhankher OP, Rosen BP, McKinney EC, et al. Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci. 2006;103:5413–5418.
  • Duan G, Zhou Y, Tong Y, et al. A CDC25 homologue from rice functions as an arsenate reductase. New Phytol. 2007;174:311–321.
  • Ahsan N, Lee DG, Alam I, et al. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during as stress. Proteomics. 2008;8:3561–3576.
  • Jung H, Kong MS, Lee BR, et al. Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate–glutathione homeostasis in riceseedlings. Front Plant Sci. 2019;10:1089.
  • Zechmann B. Diurnal changes of subcellular glutathione content in Arabidopsis thaliana. Biol Plant. 2017;61:791–796.
  • Raab A, Ferreira K, Meharg AA, et al. Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus? J Exp Bot. 2007;58:1333–1338.
  • Srivastava S, Mishra S, Tripathi RD, et al. Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in hydrilla verticillata (L.F.) royle. Environ Sci Technol. 2007;41:2930–2936.
  • Srivastava S, Suprasanna P, D’Souza SF. Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma. 2011;248:805–815.
  • Mishra S, Srivastava S, Tripathi RD, et al. Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol. 2008;86:205–215.