979
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The role of ion charge density and solubility in the biosorption of heavy metals by natural biofilm matrix of polluted freshwater: the cases of Mg(II), Cr(VI), and Cu(II)

ORCID Icon, , , & ORCID Icon
Article: 2220571 | Received 14 Apr 2023, Accepted 29 May 2023, Published online: 06 Jun 2023

References

  • Tchounwou PB, Yedjou CG, Patlolla AK, et al. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133–278.
  • Volesky B. Biosorption and me. Water Res. 2007;41(18):4017–4029.
  • Gadd GM. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol. 2009;84(1):13–28.
  • Kurniawan A, Yamamoto T. Accumulation of NH4+ and NO3- inside biofilms of natural microbial consortia: implication on nutrients seasonal dynamic in aquatic ecosystems. Int J Microbiol. 2019;2019:20191–20197.
  • Zhu X, Zhang J, Zhou J, et al. Adsorption characteristics and conformational transition of polyethylene glycol–maleated rosin polyesters on the water–air surface. Adv Compos Hybrid Mater. 2021a;5(2):1233–1240. DOI:10.1007/s42114-021-00354-6
  • Wang S, Yuan N, Dai T, et al. Surface post-functionalization of COFs by economical strategy via multiple-component one-pot tandem reactions and their application in adsorption of pesticides. Adv Compos Hybrid Mater. 2021;5(2):1439–1449. DOI:10.1007/s42114-021-00241-0
  • Sun Z, Qu K, Li J, et al. Self-template biomass-derived nitrogen and oxygen co-doped porous carbon for symmetrical supercapacitor and Dye adsorption. Adv Compos Hybrid Mater. 2021;4(4):1413–1424. DOI:10.1007/s42114-021-00352-8
  • Gu H, Gao C, Zhou X, et al. Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv Compos Hybrid Mater. 2021;4(3):459–468. DOI:10.1007/s42114-021-00289-y
  • Li L, He M, Feng Y, et al. Adsorption of xanthate from aqueous solution by multilayer graphene oxide: an experimental and molecular dynamics simulation study. Adv Compos Hybrid Mater. 2021;4(3):725–732.
  • Chai J, Hu Q, Qiu B. Conductive polyaniline improves Cr(VI) bio-reduction by anaerobic granular sludge. Adv Compos Hybrid Mater. 2021;4(4):1137–1145.
  • Yin C, Wang C, Hu Q. Selective removal of As(V) from wastewater with high efficiency by glycine-modified Fe/zn-layered double hydroxides. Adv Compos Hybrid Mater. 2021;4(2):360–370.
  • Xie X, Gao H, Luo X, et al. Polyethyleneimine-modified magnetic starch microspheres for Cd(II) adsorption in aqueous solutions. Adv Compos Hybrid Mater. 2022;5(4):2772–2786.
  • Si Y, Li J, Cui B, et al. Janus phenol–formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Adv Compos Hybrid Mater. 2022;5(2):1180–1195. DOI:10.1007/s42114-022-00446-x
  • Yin H, Zhong W, Yin M, et al. Carboxyl-functionalized poly(arylene ether nitrile)-based rare earth coordination polymer nanofibrous membrane for highly sensitive and selective sensing of fe3+ ions. Adv Compos Hybrid Mater. 2022;5(3):2031–2041. DOI:10.1007/s42114-022-00547-7
  • Liang Y, Xia M, Yu Q, et al. Guanidinium-based ionic covalent organic frameworks for capture of uranyl tricarbonate. Adv Compos Hybrid Mater. 2021;5(1):184–194.
  • Jiang L, Zhou W, Liu D, et al. Biosorption isotherm study of Cd2 +, Pb2 + and Zn2 + biosorption onto marine bacterium Pseudoalteromonas sp. SCSE709-6 in multiple systems. J Mol Liq. 2017;247:230–237.
  • Jobby R, Jha P, Yadav AK, et al. Biosorption and biotransformation of hexavalent chromium [Cr(vi)]: a comprehensive review. Chemosphere. 2018;207:255–266.
  • Vendruscolo F, GLda-R F, Filho NRA. Biosorption of hexavalent chromium by microorganisms. Int Biodeterior Biodegrad. 2017;119:87–95.
  • Sahmoune MN. Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem J. 2018;141:87–95.
  • Hadiani MR, Darani KK, Rahimifard N, et al. Biosorption of low concentration levels of Lead (II) and Cadmium (II) from aqueous solution by Saccharomyces cerevisiae: response surface methodology. Biocatal Agric Biotechnol. 2018;15:25–34.
  • Banerjee J, Bar N, Kumar Basu R, et al. Biosorption of Ni(II) by Ni(II) resistant S. cerevisiae AJ208: potential study with nutritive elements and GA modeling. 2023;1–12. DOI:10.1080/01932691.2023.2175692
  • Banerjee J, Bar N, Kumar Basu R, et al. Development of Ni(II) resistant S. cerevisiae and its application. Adsorption Study And Modeling. 2022;309:136647–136647.
  • Banerjee J, Bar N, Kumar Basu R, et al. Effect of complex nutrients, amino acids, vitamins on Ni(II) biosorption from aqueous solution by Ni(II) resistant Saccharomyces cerevisiae AJ208. Int J Phytoremediation. 2022;25(8):1095–1105.
  • Kim H-W, Hong SH, Choi H. Carbon source competition in biological selenate reduction under other oxyanions contamination. Processes. 2020;8(12):1645.
  • He ZL, Yang XE, Stoffella PJ. Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol. 2005;19(2–3):125–140.
  • Kurniawan A, Yamamoto T, Tsuchiya Y, et al. Analysis of the ion adsorption–desorption characteristics of biofilm matrices. Microbes Environ. 2012;27(4):399–406.
  • Anggayasti WL, Mancera RL, Bottomley S, et al. The effect of physicochemical factors on the self-association of HMGB1: a surface plasmon resonance study. Biochim Biophys Acta Proteins Proteom. 2016;1864(11):1620–1629.
  • Bogart SJ, Azizishirazi A, Pyle GG. Challenges and future prospects for developing Ca and Mg water quality guidelines: a meta-analysis. Philos Trans R Soc Lond B Biol Sci. 2018;374(1764):20180364.
  • van Dam RA, Hogan AC, McCullough CD, et al. Aquatic toxicity of magnesium sulfate, and the influence of calcium, in very low ionic concentration water. Environ Toxicol Chem. 2010;29(2):410–421. 10.1002/etc.56 Erratum in: Environ Toxicol Chem. 2010;29(5):1199.
  • Beukes JP, du Preez SP, van Zyl PG, et al. Review of Cr(VI) environmental practices in the chromite mining and smelting industry-relevance to development of the ring of fire, Canada. J Clean Prod. 2017;165:874–889.
  • Kurniawan A. Biosorption Cr(VI) using biofilm streamer. J Fish Sci. 2019;21(1):35–39.
  • Kurniawan A,S, Satriya CG, Satriya C. Biofilm as a bioindicator of Cr VI pollution in the lotic ecosystems. IOP Conf Ser Earth Environ Sci. 2018;137(12062):1–5.
  • Chen H, Dou J, Xu H. Removal of Cr(VI) ions by sewage sludge compost biomass from aqueous solutions: reduction to Cr(III) and biosorption. Appl Surf Sci. 2017;425:728–735.
  • Guo L, Zhang Y, Zheng J-J, et al. Synthesis and characterization of ZnNiCr-layered double hydroxides with high adsorption activities for Cr(VI). 2021;4(3):819–829. DOI:10.1007/s42114-021-00260-x
  • Khalil H, Maarouf FE, Khalil M, et al. Surface complexes of cr(vi) by eucalyptus barks. Indonesian J Chem. 2022;22(4):965. DOI:10.22146/ijc.72358
  • Samuel MS, Abigail MEA, Ramalingam C, et al. Biosorption of cr(vi) by Ceratocystis paradoxa MSR2 using isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology. PLoS ONE. 2015;10(3):e0118999.
  • Stern BR. Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. Toxicol Environ Health A. 2010;73(2):114–127.
  • Yi Y, Lv J, Zhong N, et al. Biosorption of Cu2+ by a novel modified spent Chrysanthemum: kinetics, isotherm and thermodynamics. J Environ Chem Eng. 2017;5(4):4151–4156.
  • Fathollahi A, Coupe SJ, El-Sheikh AH, Nnadi EO. Cu(ii) biosorption by living biofilms: isothermal, chemical, physical and biological evaluation. J Environ Manage. 2021;282:111950.
  • Wang T, Wusigale, Kuttappan D, et al. Polydopamine-coated chitosan hydrogel beads for synthesis and immobilization of silver nanoparticles to simultaneously enhance antimicrobial activity and adsorption kinetics. Adv Compos Hybrid Mater. 2021;4(3):696–706.
  • Wang X, Wang W-X. Intracellular biotransformation of Cu(II)/Cu(I) explained high Cu Toxicity to Phytoplankton Chlamydomonas reinhardtii. Environ Sci Technol. 2021;55(21):14772–14781.
  • Wang L, Liu X, Lee DJ, et al. Recent advances on biosorption by aerobic granular sludge. J Hazard Mater. 2018;357:253–270.
  • Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv. 2009;27(2):195–226.
  • Kurniawan A, Fukuda Y. Analysis of the electric charge properties of biofilm for the development of biofilm matrices as biosorbents for water pollutant. Energ Ecol Environ. 2022;8(1):62–68.
  • Deng Z, Sun S, Li H, et al. Modification of coconut shell-based activated carbon and purification of wastewater. Adv Compos Hybrid Mater. 2021;4(1):65–73.
  • Wei D, Weng M, Mahmoud MA, et al. Development of novel biomass hybrid aerogel supported composite phase change materials with improved light-thermal conversion and thermal energy storage capacity. Adv Compos Hybrid Mater. 2022;5(3):1910–1921.
  • Sun J, Shi L-X, Song T, et al. Flame resistance of cotton fabric finishing with N-hydroxymethylacrylamide spirophosphate. 2021;4(4):1155–1165. DOI:10.1007/s42114-021-00348-4
  • D’Acunto B, Frunzo L, Mattei MR. On a free boundary problem for biosorption in biofilms. Nonlinear Anal: Real World Appl. 2018;39:120–141.
  • Rittman BE. Biofilms, active substrata, and me. Water Res. 2018;132:135–145.
  • Kumar A, Alam A, Rani M, et al. Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol. 2017;307(8):481–489.
  • Liu Q, Yang Y, Mei X, et al. Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells. Science Of The Total Environment. 2018;631-632:695–701.
  • Chaiwong C, Koottatep T, Polpraset C. Development of kinetic models for organic and nutrient removal in biofilm photobioreactor for treatment of domestic wastewater. Environ Technol Innov. 2021;23:101547.
  • Sun Z, Zhang Y, Guo S, et al. Confining FeNi nanoparticles in biomass-derived carbon for effectively photo-Fenton catalytic reaction for polluted water treatment. 2022;5(2):1566–1581. DOI:10.1007/s42114-022-00477-4
  • Wang T, Fleming E, Luo Y. An overview of the biochemistry, synthesis, modification, and evaluation of mucoadhesive polymeric nanoparticles for oral delivery of bioactive compounds. Adv Compos Hybrid Mater. 2022;6(1). DOI:10.1007/s42114-022-00586-0
  • Soares SF, Fateixa S, Trindade T, et al. A versatile synthetic route towards gelatin-silica hybrids and magnetic composite colloidal nanoparticles. Adv Compos Hybrid Mater. 2021;5(2):884–898.
  • Fomina M, Gadd GM. Biosorption: current perspectives on concept, definition and application. Bioresour Technol. 2014;160:3–14.
  • Julien C, Laurent E, Legube B, et al. Investigation on the iron-uptake by natural biofilms. Water Res. 2014;50:212–220.
  • Kurniawan A, Tsuchiya Y, Eda A, et al. Characterization of the internal ion environment of biofilms based on charge density and shape of ion. Colloids Surf B Biointerfaces. 2015;136:22–26.
  • Kurniawan A, Fukuda Y. Electric charge characteristics of biofilms formed on various surfaces. J Pure App Chem Res. 2016;5(2):95–100.
  • Kurniawan A, Yamamoto T. Biofilm polymer for biosorption of pollutant ions. Procedia Environ Sci. 2013;17(2013):179–187.
  • Liu Y, Liu YJ. Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol. 2007;61(3):229–242.
  • Chen D, Werber JR, Zhao X, et al. A facile method to quantify the carboxyl group areal density in the active layer of polyamide thin-film composite membranes. J Membr Sci. 2017;534:100–108.
  • Tan X, Zhu S, Show PL, et al. Sorption of ionized dyes on high-salinity microalgal residue derived biochar: electron acceptor-donor and metal-organic bridging mechanisms. J Hazard Mater. 2020;393:122435.
  • Karygianni L, Ren Z, Koo H, et al. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 2020;28(8):668–681.
  • Sullan RMA, Li JK, Crowley PJ, et al. Binding forces of Streptococcus mutans P1 Adhesin. ACS Nano. 2015;9(2):1448–1460.
  • Taglialegna A, Navarro S, Ventura S, et al. Staphylococcal bap proteins build amyloid scaffold biofilm matrices in response to environmental signals. PLOS Pathog. 2016;12(6):e1005711.
  • Reichhardt C, Parsek MR. Confocal laser scanning microscopy for analysis of pseudomonas aeruginosa biofilm architecture and matrix localization. Front Microbiol. 2019;10(677). DOI:10.3389/fmicb.2019.00677
  • García-Sosa I, Olguín MT. Comparison between the cr(vi) adsorption by hydrotalcite and hydrotalcite-gibbsite compounds. Sep Sci Technol. 2015;150716070905002. DOI:10.1080/01496395.2015.1066810
  • Zhu N, Zhang J, Tang T, et al. Arsenic removal by periphytic biofilm and its application combined with biochar. Bioresour Technol. 2018;248:49–55.
  • Kozlica DK, Milosev I. Technical note: does Cr6+ really exist? Difference between charge and oxidation state and how to record them. Corrosion. 2021;77(7):696–699.
  • Huang S, Du P, Min C, et al. Poly(1-amino-5-chloroanthraquinone): highly selective and ultrasensitive fluorescent chemosensor for ferric ion. J Fluoresc. 2013;23(4):621–627.
  • Lameiras L, Quintelas C, Tavares T. Biosorption of Cr (VI) using a bacterial biofilm supported on granular activated carbon and on zeolite. Bioresour Technol. 2008;99(4):801–806.
  • Herring MP, Lackner S, Tatti O, et al. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms. Sci Total Environ. 2016;544:722–729.
  • Kurniawan A, Musa M, Salamah LN, et al. Analysis of physicochemical properties of natural biofilm matrices formed in a sub-tropical region (Lake Biwa, Japan) and a tropical region (Karangkates Reservoir, Indonesia). Aquac Aquar Conserv Legis. 2019;12(5):1951–1960.
  • Gumiński C. Solubility and the periodic table of elements. Pure Appl Chem. 2015;87(5):477–485.
  • Kurniawan A, Yamamoto T. Biosorption of lithium using biofilm matrix of natural microbial consortium. Available at Microbiology Indonesia. 2015;9(3):106–112. doi: 10.5454/mi.9.3.2