843
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Translocation and accumulation of heavy metals from the rhizoshphere soil to the medicinal plant (Paeonia Lactiflora Pall.) grown in Bozhou, Anhui Province, China

&
Article: 2223768 | Received 31 Mar 2023, Accepted 06 Jun 2023, Published online: 15 Jun 2023

References

  • Bak S-M, Back S-M, Kim DY, et al. Genotoxicity assessment of root extracts of Paeonia lactiflora Pall. Mutat Res Genet Toxicol Environ Mutagen. 2023;886:503579. doi: 10.1016/j.mrgentox.2022.503579
  • Jiang H, Li J, Wang L, et al. Total glucosides of paeony: a review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. J Ethnopharmacol. 2020;258:112913. doi: 10.1016/j.jep.2020.112913
  • Tholley MS, George LY, Wang G, et al. Risk assessment and source apportionment of heavy metalloids from typical farmlands provinces in China. Process SafEnviron Prot. 2023;171:109–303. doi: 10.1016/j.psep.2022.12.092
  • Oves M, Khan MS, Zaidi A, et al. Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview. Vienna: Springer Vienna; 2012. doi: 10.1007/978-3-7091-0730-0_1.
  • Yang L, Ren Q, Zheng K, et al. Migration of heavy metals in the soil-grape system and potential health risk assessment. Sci Total Environ. 2022;806:150646. doi: 10.1016/j.scitotenv.2021.150646
  • Wu Y, Li X, Yu L, et al. Review of soil heavy metal pollution in China: spatial distribution, primary sources, and remediation alternatives. ResouConserv Recycl. 2022;181:106261. doi: 10.1016/j.resconrec.2022.106261
  • Zhang G, Song K, Huang Q, et al. Heavy metal pollution and net greenhouse gas emissions in a rice-wheat rotation system as influenced by partial organic substitution. J Environ Manage. 2022;307:114599. doi: 10.1016/j.jenvman.2022.114599
  • Yan X, An J, Yin Y, et al. Heavy metals uptake and translocation of typical wetland plants and their ecological effects on the coastal soil of a contaminated bay in Northeast China. Sci Total Environ. 2022;803:149871. doi: 10.1016/j.scitotenv.2021.149871
  • Xu J, Li Y, Wang S, et al. Sources, transfers and the fate of heavy metals in soil-wheat systems: the case of lead (Pb)/zinc (Zn) smelting region. J Hazard Mater. 2023;441:129863. doi: 10.1016/j.jhazmat.2022.129863
  • Chen R, Cai X, Ding G, et al. Ecological risk assessment of heavy metals in farmland soils in Beijing by three improved risk assessment methods. Environ Sci Pollut Res Int. 2021;28(41):57970–57982. doi: 10.1007/s11356-021-14695-8.
  • Wang Z, Liu X, Qin H. Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. J Geochem Explor. 2019;200:159–166. doi: 10.1016/j.gexplo.2019.02.005
  • Li P, Hao H, Zhang Z, et al. A field study to estimate heavy metal concentrations in a soil-rice system: application of graph neural networks. Sci Total Environ. 2022;832:155099–. doi: 10.1016/j.scitotenv.2022.155099
  • Fei Z, Wang S, Nan Z, et al. Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China. Geoderma. 2017;305:188–196. doi: 10.1016/j.geoderma.2017.06.008
  • Qiutong X, Mingkui Z. Source identification and exchangeability of heavy metals accumulated in vegetable soils in the coastal plain of eastern Zhejiang province, China. Ecotoxicol Environ Saf. 2017;142:410–416. doi: 10.1016/j.ecoenv.2017.03.035
  • Saputro SP, Godang S, Priadi B, et al. Geochemical study of Al–Fe–Ti enrichment in rock weathering: implications for the recognizing of igneous protolith and the enrichment of REE in soil profile. Appl Geochem. 2022;140:105259. doi: 10.1016/j.apgeochem.2022.105259
  • Watanabe T, Ueda S, Nakao A, et al. Disentangling the pedogenic factors controlling active Al and Fe concentrations in soils of the Cameroon volcanic line. Geoderma. 2023;430:116289. doi: 10.1016/j.geoderma.2022.116289
  • Qureshi AA, Kazi TG, Baig JA, et al. Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass. Chemosphere. 2020;255:126960. doi: 10.1016/j.chemosphere.2020.126960
  • Nemati K, Abu Bakar NK, Abas MR, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J Hazard Mater. 2011;192:402–410. doi: 10.1016/j.jhazmat.2011.05.039
  • Jamali MK, Kazi TG, Arain MB, et al. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. J Hazard Mater. 2009;164(2–3):1386–1391. doi: 10.1016/j.jhazmat.2008.09.056.
  • Dai J. Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biol Biochem. 2004;36(1):91–98. doi: 10.1016/j.soilbio.2003.09.001.
  • Muller G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal. 1969;2:109–118.
  • Li PF, Tao CJ. Heavy metal content characteristics and environmental quality assessment of agricultural land in the Yellow River flooded area of Anhui Province. J Geol. 2019;43(2): 301–306. in Chinese.
  • Yang DL. Pollution characteristics and health risk assessment of heavy metals in topsoil of Hefei City proper [ M.S. Thesis]. Hefei: Anhui Medical University; 2021. doi: 10.26921/d.cnki.ganyu.2021.000673. [In Chinese]
  • Aydi A, Ghannem S, Nasri A, et al. Evaluation of heavy metals contamination and pollution indices levels in surface sediments of the Bizerte coastal line, Tunisia. Mar Pollut Bull. 2022;184:114171. doi: 10.1016/j.marpolbul.2022.114171
  • Liu Z, Du Q, Guan Q, et al. A Monte Carlo simulation-based health risk assessment of heavy metals in soils of an oasis agricultural region in northwest China. Sci Total Environ. 2023;857:159543. doi: 10.1016/j.scitotenv.2022.159543
  • Magni LF, Castro LN, Rendina AE. Evaluation of heavy metal contamination levels in river sediments and their risk to human health in urban areas: a case study in the Matanza-Riachuelo Basin, Argentina. Environ Res. 2021;197:110979. doi: 10.1016/j.envres.2021.110979
  • Lars H. An ecological risk index for aquatic pollution control.A sedimentological approach. Water Res. 1980;14(8):975–1001. doi: 10.1016/0043-1354(80)90143-8.
  • Zhou L, Liu G, Shen M, et al. Potential ecological and health risks of heavy metals for indoor and corresponding outdoor dust in Hefei, Central China. Chemosphere. 2022;302:134864. doi: 10.1016/j.chemosphere.2022.134864
  • Xiang Q, Yu H, Chu H, et al. The potential ecological risk assessment of soil heavy metals using self-organizing map. Sci Total Environ. 2022;843:156978. doi: 10.1016/j.scitotenv.2022.156978
  • Hoshyari E, Hassanzadeh N, Keshavarzi B, et al. Spatial distribution, source apportionment, and ecological risk assessment of elements (PTEs, REEs, and ENs) in the surface soil of shiraz city (Iran) under different land-use types. Chemosphere. 2023;311:137045. doi: 10.1016/j.chemosphere.2022.137045
  • Men C, Liu R, Xu L, et al. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. J Hazard Mater. 2020;388:121763. doi: 10.1016/j.jhazmat.2019.121763
  • Angulo E. The tomlinson pollution load index applied to heavy metal, ‘Mussel-Watch’ data: a useful index to assess coastal pollution. Sci Total Environ. 1996;187(1):19–56. doi: 10.1016/0048-9697(96)05128-5.
  • Tomlinson DL, Wilson JG, Harris CR, et al. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolnder Meeresuntersuchungen. 1980;33(1–4):566–575. doi: 10.1007/BF02414780.
  • Waris M, Baig JA, Talpur FN, et al. Evaluation of selected halophytes for phytoextraction of Co, Cu, Zn and capability of desalination of saline soil. Int J Environ Sci Technol. 2021;19(4):2737–2746. doi: 10.1007/s13762-021-03269-3.
  • Waris M, Baig JA, Talpur FN, et al. An environmental field assessment of soil quality and phytoremediation of toxic metals from saline soil by selected halophytes. J Environ Health Sci Eng. 2022;20(1):535–544. doi: 10.1007/s40201-022-00800-7.
  • Chen X-X, Liu Y-M, Zhao Q-Y, et al. Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environ Pollut. 2020;262:114348. doi: 10.1016/j.envpol.2020.114348
  • Xiao L, Li MH, Dai J, et al. Assessment of earthworm activity on Cu, Cd, Pb and Zn bioavailability in contaminated soils using biota to soil accumulation factor and DTPA extraction. Ecotoxicol Environ Saf. 2020;195:110513. doi: 10.1016/j.ecoenv.2020.110513
  • Rezapour S, Atashpaz B, Moghaddam SS, et al. Heavy metal bioavailability and accumulation in winter wheat (Triticum aestivum L.) irrigated with treated wastewater in calcareous soils. Sci Total Environ. 2019;656:261–269. doi: 10.1016/j.scitotenv.2018.11.288
  • Milicevic T, Urosevic MA, Relic D, et al. Bioavailability of potentially toxic elements in soil-grapevine (leaf, skin, pulp and seed) system and environmental and health risk assessment. Sci Total Environ. 2018;626:528–545. doi: 10.1016/j.scitotenv.2018.01.094
  • Wang J, Liu G, Liu H, et al. Tracking historical mobility behavior and sources of lead in the 59-year sediment core from the Huaihe River using lead isotopic compositions. Chemosphere. 2017;184:584–593. doi: 10.1016/j.chemosphere.2017.06.022
  • Sheng J. The research of the industrial economy development in Bozhou City [ M.S. Thesis]. Hefei: Hefei University of Technology; 2010. [In Chinese]
  • Hu W, Huang B, Tian K, et al. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: levels, transfer and health risk. Chemosphere. 2017;167:82–90. doi: 10.1016/j.chemosphere.2016.09.122
  • Lorestani B, Cheraghi M, Yousefi N. Accumulation of Pb, Fe, Mn, Cu and Zn in plants and choice of hyperaccumulator plant in the industrial town of Vian, Iran. Arch Biol Sci (Beogr). 2011;63(3):739–745. doi: 10.2298/ABS1103739L.
  • Xu L, Lu A, Wang J, et al. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China. Ecotoxicol Environ Saf. 2015;122:214–220. doi: 10.1016/j.ecoenv.2015.07.025
  • Al-Maliki S, Al-Shamary A. Enhanced phytoremediation of soil heavy metals by arbuscular mycorrhizal fungi, Bacillus subtilis and CO2 release in Typha domingensis rhizosphere. Arab J Geosci. 2022;15(22). doi: 10.1007/s12517-022-10968-9
  • Al-Maliki S, Al-Shamary A. Vital evidence for arbuscular mycorrhizal fungi, bacteria and cattail plant to remove Pb-Cd heavy metals from contaminated soils. Acta Ecologica Sinica. 2022;42(4):392–397. doi: 10.1016/j.chnaes.2022.05.008.