504
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nitric oxide is involved in regulating cytochrome P450 gene family and mitochondrial related genes of Pleurotus eryngii in response to cadmium stress: preliminary expression patterns analysis

, , , , , , & show all
Article: 2229023 | Received 16 Feb 2023, Accepted 19 Jun 2023, Published online: 26 Jun 2023

References

  • Li Q, Xiang P, Zhang T, et al. The effect of phosphate mining activities on rhizosphere bacterial communities of surrounding vegetables and crops. Sci Total Environ. 2022;821:153479. DOI:10.1016/j.scitotenv.2022.153479
  • Sharma P, Rathee S, Ahmad M, et al. Biodegradable chelant-metal complexes enhance cadmium phytoextraction efficiency of Solanum americanum. Environ Sci Pollut Res. 2022;38(38):57102–326. DOI:10.1007/s11356-022-19622-z
  • Bai Z, Wu F, He Y, et al. Pollution and risk assessment of heavy metals in Zuoxiguo antimony mining area, southwest China. Environ Pollut Bioavailabil. 2022;35(1):1–11. DOI:10.1080/26395940.2022.2156397
  • Bao Z, Feng H, Tu W, et al. Method and mechanism of chromium removal from soil: a systematic review. Environ Sci Pollut Res. 2022;29(24):35501–35517. DOI:10.1007/s11356-022-19452-z
  • Bao Z, Wang X, Wang Q, et al. A novel method of domestication combined with ARTP to improve the reduction ability of Bacillus velezensis to Cr (VI). J Environ Chem Eng. 2023;11(1):109091. DOI:10.1016/j.jece.2022.109091
  • Zhou Q, Guo J, He C, et al. Comparative transcriptome analysis between low- and high-cadmium-accumulating genotypes of pakchoi (Brassica chinensis L.) in response to cadmium stress. Environ Sci Technol. 2016;50(12):6485–6494. DOI:10.1021/acs.est.5b06326
  • Li Q, Xiang P, Li L, et al. Phosphorus mining activities alter endophytic bacterial communities and metabolic functions of surrounding vegetables and crops. Plant Soil. 2023;1–20. DOI:10.1007/s11104-023-05961-4
  • Liao Y, Tang Y, Wang S, et al. Abscisic acid modulates differential physiological and biochemical responses to cadmium stress in Brassica napus. Environ Pollut Bioavailabil. 2023;35(1):2168216. DOI:10.1080/26395940.2023.2168216
  • Melhi S. Recyclable magnetic nanocomposites for efficient removal of cadmium ions from water: performance, mechanism and isotherm studies. Environ Pollut Bioavailabil. 2023;35(1):2163922. doi: 10.1080/26395940.2022.2163922
  • Guo S, Yao Y, Zuo L, et al. Enhancement of tolerance of Ganoderma lucidum to cadmium by nitric oxide. J Basic Microbiol. 2016;56(1):36–43. DOI:10.1002/jobm.201500451
  • Jaworska G, Berna E, Mickowska B. Effect of production process on the amino acid content of frozen and canned Pleurotus ostreatus mushrooms. Food Chem. 2011;125(3):936–943. doi: 10.1016/j.foodchem.2010.09.084
  • Sun Y, Hu X, Li W. Antioxidant, antitumor and immunostimulatory activities of the polypeptide from Pleurotus eryngii mycelium. Int j biol macromol. 2017;97:323–330. doi: 10.1016/j.ijbiomac.2017.01.043
  • Kikuchi T, Kitaura K, Katsumoto A, et al. Three bisabolane-type sesquiterpenes from edible mushroom Pleurotus eryngii. Fitoterapia. 2018;129:108–113. DOI:10.1016/j.fitote.2018.06.021
  • Zeng X, Lin J, Guo L, et al. Evaluation of burma reed as substrate for production of pleurotus eryngii. Indian J Microbiol. 2013;53(2):181–186. DOI:10.1007/s12088-012-0320-9
  • Li Q, Huang W, Xiong C, et al. Transcriptome analysis reveals the role of nitric oxide in Pleurotus eryngii responses to Cd2+ stress. Chemosphere. 2018;201:294–302. DOI:10.1016/j.chemosphere.2018.03.011
  • Wang D, Liu Y, Tan X, et al. Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L.) Gaud under cadmium stress. Environ Sci Pollut Res. 2015;22(5):3489–3497. DOI:10.1007/s11356-014-3581-5
  • Napoli C, Paolisso G, Casamassimi A, et al. Effects of nitric oxide on cell proliferation: novel insights. J Am Coll Cardiol. 2013;62(2):89–95. DOI:10.1016/j.jacc.2013.03.070
  • Takemura S, Minamiyama Y, Imaoka S, et al. Hepatic cytochrome P450 is directly inactivated by nitric oxide, not by inflammatory cytokines, in the early phase of endotoxemia. J Hepatol. 1999;30(6):1035–1044. DOI:10.1016/S0168-8278(99)80257-8
  • Abdalmegeed D, Zhao G, Cheng P, et al. The Importance of Nitric Oxide as the Molecular Basis of the Hydrogen Gas Fumigation-Induced Alleviation of Cd Stress on Ganoderma lucidum. J Fungi (Basel). 2021;8(1):10. DOI:10.3390/jof8010010
  • Vieira A, Linares E, Augusto O, et al. Evidence of a Ca2+-NO-cGMP signaling pathway controlling zoospore biogenesis in the aquatic fungus Blastocladiella emersonii. Fungal Genet Biol. 2009;46(8):575–584. DOI:10.1016/j.fgb.2009.04.002
  • Canovas D, Marcos J, Marcos A, et al. Nitric oxide in fungi: is there NO light at the end of the tunnel? Curr Genet. 2016;62(3):513–518. DOI:10.1007/s00294-016-0574-6
  • Hou L, Zhao M, Huang C, et al. Alternative oxidase gene induced by nitric oxide is involved in the regulation of ROS and enhances the resistance of Pleurotus ostreatus to heat stress. Microb Cell Fact. 2021;20(1):137. doi: 10.1186/s12934-021-01626-y
  • Kong W, Huang C, Chen Q, et al. Nitric oxide is involved in the regulation of trehalose accumulation under heat stress in Pleurotus eryngii var. tuoliensis Biotechnol Lett. 2012;34(10):1915–1919. DOI:10.1007/s10529-012-0988-2
  • Ortega Ugalde S, Boot M, Commandeur J, et al. Function, essentiality, and expression of cytochrome P450 enzymes and their cognate redox partners in Mycobacterium tuberculosis: are they drug targets? Appl Microbiol Biotechnol. 2019;103(9):3597–3614. DOI:10.1007/s00253-019-09697-z
  • Durairaj P, Hur J, Yun H. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb Cell Fact. 2016; 15(1):125. doi: 10.1186/s12934-016-0523-6
  • Dauda W, Morumda D, Abraham P, et al. Genome-wide analysis of cytochrome p450s of alternaria species: evolutionary origin, family expansion and putative functions. Journal Of Fungi. 2022;8(4):324. DOI:10.3390/jof8040324
  • Chen W, Lee M, Jefcoate C, et al. Fungal cytochrome p450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol Evol. 2014;6(7):1620–1634. DOI:10.1093/gbe/evu132
  • Sokolova I. Mitochondrial adaptations to variable environments and their role in animals’ stress tolerance. Integr Comp Biol. 2018;58(3):519–531. doi: 10.1093/icb/icy017
  • Munoz-Gomez S, Wideman J, Roger A, et al. The origin of mitochondrial cristae from alphaproteobacteria. Molecular biology and evolution. Mol Biol Evol. 2017;34(4):943–956. DOI:10.1093/molbev/msw298
  • Li Q, Wu P, Li L, et al. The first eleven mitochondrial genomes from the ectomycorrhizal fungal genus (Boletus) reveal intron loss and gene rearrangement. Int J Of Biol Macromol 2021. 2021;172:560–572. DOI:10.1016/j.ijbiomac.2021.01.087
  • Huerta-Cepas J, Szklarczyk D, Forslund K, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44(D1):D286–293. DOI:10.1093/nar/gkv1248
  • Chen C, Chen H, Zhang Y, et al. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202. DOI:10.1016/j.molp.2020.06.009
  • Love M, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Bio. 2014; 15(12):550. doi: 10.1186/s13059-014-0550-8
  • Trapnell C, Williams B, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnol. 2010;28(5):511–515. DOI:10.1038/nbt.1621
  • Li Q, Luo Y, Sha A, Xiao W, Xiong Z, Chen X, He J, Peng L and Zou L. (2023). Analysis of synonymous codon usage patterns in mitochondrial genomes of nine Amanita species. Front. Microbiol., 14 10.3389/fmicb.2023.1134228
  • Young M, Wakefield M, Smyth G, et al. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Bio. 2010;11(2):R14. doi: 10.1186/gb-2010-11-2-r14
  • Zhang S, Liu J, Zhong G, et al. Genome-Wide Identification and Expression Patterns of the C2H2-Zinc Finger Gene Family Related to Stress Responses and Catechins Accumulation in Camellia sinensis. [L] O Kuntze Int J Mol Sci. 2021;22(8):4197. DOI:10.3390/ijms22084197
  • Duan Y, Zhu X, Shen J, et al. Genome-wide identification, characterization and expression analysis of the amino acid permease gene family in tea plants (Camellia sinensis). Genomics. 2020;112(4):2866–2874. DOI:10.1016/j.ygeno.2020.03.026
  • Zhao C, Bao Z, Feng H, et al. Nitric oxide enhances resistance of Pleurotus eryngii to cadmium stress by alleviating oxidative damage and regulating of short-chain dehydrogenase/reductase family. Environ Sci Pollut Res. 2022;29(35):53036–53049. DOI:10.1007/s11356-022-19613-0
  • Bellin D, Asai S, Delledonne M, et al. Nitric oxide as a mediator for defense responses. Molecular plant-microbe interactions: mPMI. Mol Plant Microbe Interact. 2013;26(3):271–277. DOI:10.1094/MPMI2013
  • Alsaad A, Zordoky B, Tse M, et al. Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab Rev. 2013;45(2):173–195. DOI:10.3109/03602532.2012.754460
  • Xiao Y, Wen J, Meng R, et al. The expansion and diversity of the CYP75 gene family in Vitaceae. PeerJ. 2021;9:e12174. DOI:10.7717/peerj.12174
  • El-Sappah A, Elbaiomy R, Elrys A, et al. Genome-Wide Identification and Expression Analysis of Metal Tolerance Protein Gene Family in Medicago truncatula Under a Broad Range of Heavy Metal Stress. Front In Genetics 2021. 2021;12:713224. DOI:10.3389/fgene.2021.713224
  • Chadha S, Mehetre S, Bansal R, et al. Genome-wide analysis of cytochrome P450s of Trichoderma spp.: annotation and evolutionary relationships. Fungal Biol Biotechnol. 2018;5(1):12. DOI:10.1186/s40694-018-0056-3
  • Fu Z, Wang Y, Lu Y, et al. Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis. Plant Sci. 2016;252:282–289. DOI:10.1016/j.plantsci.2016.08.005
  • Sandor S, Zhang Y, Xu J. Fungal mitochondrial genomes and genetic polymorphisms. Appl Microbiol Biotechnol. 2018;102(22):9433–9448. doi: 10.1007/s00253-018-9350-5
  • Li Q, Chen C, Xiong C, et al. Comparative mitogenomics reveals large-scale gene rearrangements in the mitochondrial genome of two Pleurotus species. Appl Microbiol Biotechnol. 2018;102(14):6143–6153. DOI:10.1007/s00253-018-9082-6
  • Punia H, Tokas J, Malik A, et al. Genome-Wide Transcriptome Profiling, Characterization, and Functional Identification of NAC Transcription Factors in Sorghum under Salt Stress. Antioxidants. 2021;10(10):1605. DOI:10.3390/antiox10101605
  • Gadelha C, Miranda R, Alencar N, et al. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J Plant Physiol. 2017;212:69–79. DOI:10.1016/j.jplph.2017.02.005
  • Xu F, Chen P, Li H, et al. Comparative transcriptome analysis reveals the differential response to cadmium stress of two Pleurotus fungi: pleurotus cornucopiae and Pleurotus ostreatus. J Hazard Mater 2021. 2021;416:125814. DOI:10.1016/j.jhazmat.2021.125814