438
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In vitro toxicity assessment of atmospheric particulate matter on human lung and hepatic cells with agar membrane-based sampling and exposure strategy

, , , , , , & show all
Article: 2233699 | Received 29 May 2023, Accepted 30 Jun 2023, Published online: 11 Jul 2023

References

  • Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002;360(9341):1233–352. doi: 10.1016/S0140-6736(02)11274-8
  • Atkinson RW, Kang S, Anderson HR, et al. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax. 2014;69(7):660–665. doi: 10.1136/thoraxjnl-2013-204492
  • Burnett RT, Pope CA 3rd, Ezzati M, et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect. 2014;122(4):397–403. doi: 10.1289/ehp.1307049
  • Pope CA 3rd, Turner MC, Burnett RT, et al. Relationships between fine particulate air pollution, cardiometabolic disorders, and cardiovascular mortality. Circ Res. 2015;116(1):108–115. doi: 10.1161/CIRCRESAHA.116.305060
  • Hvidtfeldt UA, Sorensen M, Geels C, et al. Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone and mortality in a Danish cohort. Environ Int. 2019;123:265–272. doi: 10.1016/j.envint.2018.12.010
  • Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2019;394(10204):1145–1158. doi: 10.1016/S0140-6736(19)30427-1
  • Yin P, Guo J, Wang L, et al. Higher risk of cardiovascular disease associated with smaller size-fractioned particulate matter. Environ Sci Tech Let. 2020;7(2):95–101. doi: 10.1021/acs.estlett.9b00735
  • Bein KJ, Wexler AS. A high-efficiency, low-bias method for extracting particulate matter from filter and impactor substrates. Atmos Environ. 2014;90:87–95. doi: 10.1016/j.atmosenv.2014.03.042
  • Gali NK, Yang F, Cheung CS, et al. A comparative analysis of chemical components and cell toxicity properties of solid and semi-volatile PM from diesel and biodiesel blend. J Aerosol Sci. 2017;111:51–64. doi: 10.1016/j.jaerosci.2017.06.005
  • Chen SS, Wang TQ, Song WC, et al. A novel particulate matter sampling and cell exposure strategy based on agar membrane for cytotoxicity study. Chemosphere. 2022;300:134473. doi: 10.1016/j.chemosphere.2022.134473
  • Roper C, Chubb LG, Cambal L, et al. Characterization of ambient and extracted PM2.5 collected on filters for toxicology applications. Inhal Toxicol. 2015;27(13):673–681. doi: 10.3109/08958378.2015.1092185
  • Roper C, Chubb LG, Cambal L, et al. Association of IL-6 with PM2.5 components: importance of characterizing filter-based PM2.5 following extraction. Water Air Soil Pollut. 2017;228(1):43. doi: 10.1007/s11270-016-3219-y
  • Jin L, Luo X, Fu P, et al. Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts. Natl Sci Rev. 2017;4(4):593–610. doi: 10.1093/nsr/nww079
  • Liu C, Hsu PC, Lee HW, et al. Transparent air filter for high-efficiency PM2.5 capture. Nat Commun. 2015;6(1):6205. doi: 10.1038/ncomms7205
  • Heo J, Antkiewicz DS, Shafer MM, et al. Assessing the role of chemical components in cellular responses to atmospheric particle matter (PM) through chemical fractionation of PM extracts. Anal Bioanal Chem. 2015;407(20):5953–5963. doi: 10.1007/s00216-015-8749-4
  • Rui W, Guan L, Zhang F, et al. PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway. J Appl Toxicol. 2016;36(1):48–59. doi: 10.1002/jat.3143
  • Chowdhury PH, Okano H, Honda A, et al. Aqueous and organic extract of PM2.5 collected in different seasons and cities of Japan differently affect respiratory and immune systems. Environ Pollut. 2018;235:223–234. doi: 10.1016/j.envpol.2017.12.040
  • Belcik MK, Trusz-Zdybek A, Zaczynska E, et al. Genotoxic and cytotoxic properties of PM2.5 collected over the year in Wroclaw (Poland). Sci Total Environ. 2018;637-638:480–497. doi: 10.1016/j.scitotenv.2018.04.166
  • Yang A, Jedynska A, Hellack B, et al. Measurement of the oxidative potential of PM2.5 and its constituents: the effect of extraction solvent and filter type. Atmos Environ. 2014;83:35–42. doi: 10.1016/j.atmosenv.2013.10.049
  • Roper C, Delgado LS, Barrett D, et al. PM2.5 filter extraction methods: Implications for chemical and toxicological analyses. Environ Sci Technol. 2019;53(1):434–442. doi: 10.1021/acs.est.8b04308
  • Xu FF, Qiu XH, Hu XY, et al. Effects on IL-1β signaling activation induced by water and organic extracts of fine particulate matter (PM2.5) in vitro. Environ Pollut. 2018;237:592–600. doi: 10.1016/j.envpol.2018.02.086
  • Tang ZJ, Cao ZM, Guo XW, et al. Cytotoxicity and toxicoproteomic analyses of human lung epithelial cells exposed to extracts of atmospheric particulate matters on PTFE filters using acetone and water. Ecotoxicol Environ Saf. 2020;191:110223. doi: 10.1016/j.ecoenv.2020.110223
  • Vuong NQ, Breznan D, Goegan P, et al. In vitro toxicoproteomic analysis of A549 human lung epithelial cells exposed to urban air particulate matter and its water-soluble and insoluble fractions. Part Fibre Toxicol. 2017;14(1):39. doi: 10.1186/s12989-017-0220-6
  • Park SK, Jeon YM, Son BS, et al. Proteomic analysis of the differentially expressed proteins by airborne nanoparticles. J Appl Toxicol. 2011;31(5):463–470. doi: 10.1002/jat.1658
  • Huang QY, Zhang J, Peng SY, et al. Effects of water soluble PM2.5 extracts exposure on human lung epithelial cells (A549): A proteomic study. J Appl Toxicol. 2014;34(6):675–687. doi: 10.1002/jat.2910
  • Jian T, Ding X, Wu Y, et al. Hepatoprotective effect of loquat leaf flavonoids in PM2.5-induced non-alcoholic fatty liver disease via regulation of IRs-1/Akt and CYP2E1/JNK pathways. Int J Mol Sci. 2018;19(10):3005. doi: 10.3390/ijms19103005
  • Gualtieri M, Ovrevik J, Holme JA, et al. Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells. Toxicol Vitro. 2010;24(1):29–39. doi: 10.1016/j.tiv.2009.09.013
  • Shang Y, Wu M, Zhou J, et al. Cytotoxicity comparison between fine particles emitted from the combustion of municipal solid waste and biomass. J Hazard Mater. 2019;367:316–324. doi: 10.1016/j.jhazmat.2018.12.065
  • Xiang P, He RW, Liu RY, et al. Cellular responses of normal (HL-7702) and cancerous (HepG2) hepatic cells to dust extract exposure. Chemosphere. 2018;193:1189–1197. doi: 10.1016/j.chemosphere.2017.11.123
  • Zhang Q, Luo Q, Yuan X, et al. Atmospheric particulate matter2.5 promotes the migration and invasion of hepatocellular carcinoma cells. Oncol Lett. 2017;13(5):3445–3450. doi: 10.3892/ol.2017.5947
  • Kumar SS, Muthuselvam P, Pugalenthi V, et al. Toxicoproteomic analysis of human lung epithelial cells exposed to steel industry ambient particulate matter (PM) reveals possible mechanism of PM related carcinogenesis. Environ Pollut. 2018;239:483–492. doi: 10.1016/j.envpol.2018.04.049
  • Oeder S, Kanashova T, Sippula O, et al. Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions. PLoS One. 2015;10(6):e0126536. doi: 10.1371/journal.pone.0126536
  • Krokan HE, Bjoras M. Base excision repair. Csh Perspect Biol. 2013;5(4):a012583. doi: 10.1101/cshperspect.a012583
  • Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Bio. 2017;18(10):610–621. doi: 10.1038/nrm.2017.53
  • Ruggiano A, Foresti O, Carvalho P. ER-associated degradation: protein quality control and beyond. J Cell Bio. 2014;204(6):869–879. doi: 10.1083/jcb.201312042
  • Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–1086. doi: 10.1126/science.1209038
  • Watterson TL, Hamilton B, Martin R, et al. Urban particulate matter causes ER stress and the unfolded protein response in human lung cells. Toxicol Sci. 2009;112(1):111–122. doi: 10.1093/toxsci/kfp186
  • Piao MJ, Ahn MJ, Kang KA, et al. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol. 2018;92(6):2077–2091. doi: 10.1007/s00204-018-2197-9
  • Wang Y, Tang M. PM2.5 induces autophagy and apoptosis through endoplasmic reticulum stress in human endothelial cells. Sci Total Environ. 2020;710:136397. doi: 10.1016/j.scitotenv.2019.136397
  • Hu H, Asweto CO, Wu J, et al. Gene expression profiles and bioinformatics analysis of human umbilical vein endothelial cells exposed to PM2.5. Chemosphere. 2017;183:589–598. doi: 10.1016/j.chemosphere.2017.05.153
  • Ye G, Ding D, Gao H, et al. Comprehensive metabolic responses of HepG2 cells to fine particulate matter exposure: Insights from an untargeted metabolomics. Sci Total Environ. 2019;691:874–884. doi: 10.1016/j.scitotenv.2019.07.192
  • Gilmore TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006;25(51):6680–6684. doi: 10.1038/sj.onc.1209954
  • Scheidereit C. IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene. 2006;25(51):6685–6705. doi: 10.1038/sj.onc.1209934
  • Baldwin AS. The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol. 1996;14(1):649–681. doi: 10.1146/annurev.immunol.14.1.649
  • Wang N, Ma Y, Liu Z, et al. Hydroxytyrosol prevents PM2.5-induced adiposity and insulin resistance by restraining oxidative stress related NF-κB pathway and modulation of gut microbiota in a murine model. Free Radic Biol Med. 2019;141:393–407. doi: 10.1016/j.freeradbiomed.2019.07.002