528
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dissolution of anthropogenic and natural hydrogen sulfide in deep-ocean conditions

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2236299 | Received 05 Apr 2023, Accepted 09 Jul 2023, Published online: 23 Jul 2023

References

  • Ray D, Sreenivas B, Prakash LS, et al. Fe and S-isotope compositions of hydrothermal deposits from Kings Triple Junction, Lau Basin, southwest Pacific Ocean. Marine Chem. 2021;230:103929. doi: 10.1016/j.marchem.2021.103929
  • Milesi V, Shock E, Ely T, et al. Forward geochemical modeling as a guiding tool during exploration of Sea Cliff hydrothermal field, Gorda Ridge. Planet Space Sci. 2020;197:105151. doi: 10.1016/j.pss.2020.105151
  • CNRS. New form of sulfur discovered in geological fluids. ScienceDaily. 2011.
  • Saint-Macary A, Barr NG, Armstrong EA, et al. The influence of ocean acidification and warming on DMSP & DMS in New Zealand Coastal Water. Atmosphere. 2021;12(2):181. doi: 10.3390/atmos12020181
  • Amend JP, Edwards KJ, Lyons TW. Sulfur biogeochemistry: past and present. Geol Soc Am. 2004.
  • Ann Moran M, Durham BP. Sulfur metabolites in the pelagic ocean. Nature Rev Microbiol. 2019;17(11):665–363. doi: 10.1038/s41579-019-0250-1
  • Laakso T, Anna Waldeck FM, Johnston D. Volcanic controls on seawater sulfate over the past 120 million years. Proc Natl Acad Sci, USA. 2020;117(35):21118–21124. doi: 10.1073/pnas.1921308117
  • Rodríguez A, Chang D, Calzada A, et al. Probabilistic modeling of oil spills at the exclusive economic Zone of Cuba using Petromar-3D model. J Geosci Environ Prot. 2021;9(6):21–34. doi: 10.4236/gep.2021.96002
  • Rodríguez RA, Lonin SA. Influencia de los dispersantes en la contaminación por btex en un derrame profundo de hidrocarburos. Bol Cient CIOH. 2016;34(34):3–12. doi: 10.26640/22159045.423
  • Ryerson TB, Camilli R, Kessler JD, et al. Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution. Proc Natl Acad Sci, USA. 2012;109(50):20246–20253. doi: 10.1073/pnas.1110564109
  • Bracco A, Paris CB, Esbaugh AJ, et al. Transport, fate and impacts of the deep plume of petroleum hydrocarbons formed during the Macondo blowout. Front Mar Sci. 2020;7(542147):1–22. doi: 10.3389/fmars.2020.542147
  • Shigenaka G. Chapter 27 - Effects of Oil in the Environment. Boston: Gulf Professional Publishing; 2011. doi: 10.1016/B978-1-85617-943-0.10027-9
  • Zhou Z, Guo L, Shiller AM, et al. Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC Techniques. Mar Chem. 2013;148:10–21. doi: 10.1016/j.marchem.2012.10.003
  • Reddy CM, Arey JS, Seewald JS, et al. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci, USA. 2012;109(50):20229–20234. doi: 10.1073/pnas.1101242108
  • Blumberg AF. A primer for ECOMSED, version 1.3, users manual, HydroQual. HydroQual, Inc.; 2002.
  • Uchida T, Nagamine I, Yabe I, et al. Dissolution process observation of methane bubbles in the deep ocean simulator facility. Energies. 2020;13(3938):2–11. doi: 10.3390/en13153938
  • Wankel SD, Germanovich LN, Lilley MD, et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nat Geosci. 2011;4(7):461–468. doi: 10.1038/ngeo1183
  • Drozd GT, Worton DR, Aeppli C, et al. Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways. J Geophys Res Oceans. 2015;120(11):7300–7315. doi: 10.1002/2015JC011093
  • Roussak O, Gesser HD. Applied chemistry: a textbook for engineers and technologists. Springer US: SpringerLink: Bücher; 2012.
  • Nissanka ID, Yapa PD. Calculation of oil droplet size distribution in ocean oil spills: A review. Mar Pollut Bull. 2018;135:723–734. doi: 10.1016/j.marpolbul.2018.07.048
  • Ming L, Garrett C. The relationship between oil droplet size and upper ocean turbulence. Mar Pollut Bull. 1998;36(12):961–970. doi: 10.1016/S0025-326X(98)00096-4
  • Yapa PD, Wimalaratne MR, Dissanayake AL, et al. How does oil and gas behave when released in deepwater? J Hydro-Environ Res. 2012;6(4):275–285. doi: 10.1016/j.jher.2012.05.002
  • Copernicus Marine Service. Global ocean physics reanalysis. 2022.
  • Chen Y. Development of an oil spill model adaptable to exposure and submergence conversion of tidal flats: A case study in the Changjiang estuary. Mar Pollut Bull. 2021;171:112715. doi: 10.1016/j.marpolbul.2021.112715
  • Warren LM, Harriot P, Cleveland Smith J. Operaciones unitarias en ingeniería química. Vol. 7. Mexico: McGraw Hill Interamericana; 2005.
  • Kretschmar U, McBride D. The metallogeny of lode gold deposits: a syngenetic perspective. Geosci Canada.2015;43(4):291–3
  • Von Damm KL. Seafloor hydrothermal activity: Black smoker chemistry and chimneys. Annu Rev Earth Planet Sci. 1990;18(1):173–204. doi: 10.1146/annurev.ea.18.050190.001133
  • Gamo T, Chiba H, Yamanaka T, et al. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge. Earth Planet Sci Lett. 2001;193(3–4):371–379. doi: 10.1016/S0012-821X(01)00511-8
  • Ecured. [cited 2022 05 6]. Available from https://www.ecured.cu.
  • Estapa M, Breier J, German C. Particle dynamics in the rising plume at piccard hydrothermal field, mid-Cayman rise. Geochem Geophys Geosyst. 2015;16(8):2762–2774. doi: 10.1002/2015GC005831
  • Bjørlykke K, Mondol N. Knut Bjørlykke (ed) 2015 petroleum geoscience. From Sedimentary Environ Rock Phys. 2017;10
  • Zheng L, Yapa PD, Chen F. A model for simulating deepwater oil and gas blowouts - part I: Theory and model formulation. J Hydraul Res. 2010 February;41(4):339–351. doi: 10.1080/00221680309499980