582
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of biosolid biochar on crop production and metal accumulation through a rice-wheat rotation system in fields

, , , &
Article: 2240016 | Received 08 May 2023, Accepted 18 Jul 2023, Published online: 29 Jul 2023

References

  • Khan S, Wang N, Reid BJ, et al. Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environ Pollut. 2013;175:64–372. doi: 10.1016/j.envpol.2012.12.014
  • Patel S, Kundu S, Halder P, et al. Thermogravimetric analysis of biosolids pyrolysis in the presence of mineral oxides. Renewable Energy. 2019;141:707–716. doi: 10.1016/j.renene.2019.04.047
  • Du QB, Zhong XD. The treatment and application of living sludge in China. Energy Environ. 2017;5:82–83.
  • Awasthi MK, Singh E, Binod P, et al. Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review. Renew Sust Energ Rev. 2022;156:111987. doi: 10.1016/j.rser.2021.111987
  • NRC. Biosolids applied to land: advancing standards and practices. Washington DC: National Academy Press; 2002.
  • Renaud M, Chelinho S, Alvarenga P, et al. Organic wastes as soil amendments - Effects assessment towards soil invertebrates. J Hazard Mater. 2017;330:149–156. doi: 10.1016/j.jhazmat.2017.01.052
  • Hu M, Ye ZH, Zhang HY, et al. Thermochemical conversion of sewage sludge for energy and resource recovery: technical challenges and prospects. Environ Pollut Bioavailabil. 2021;33(1):145–163. doi: 10.1080/26395940.2021.1947159
  • Li SM, Li Z, Li J, et al. Influence of long-term biosolid applications on communities of soil fauna and their metal accumulation: a field study. Environ Pollut. 2020;260:114017. doi: 10.1016/j.envpol.2020.114017
  • Wang GM, Zhou LX. Application of green manure and pig manure to Cd-contaminated paddy soil increases the risk of Cd uptake by rice and Cd downward migration into groundwater: field micro-plot trials. Water Air Soil Pollut. 2017;228(1):29. doi: 10.1007/s11270-016-3207-2
  • Wang Y, Zhang Y, Pei L, et al. Converting Ni-loaded biochars into supercapacitors: Implication on the reuse of exhausted carbonaceous sorbents. Sci Rep. 2017;7(1):41523. doi: 10.1038/srep41523
  • Yue Y, Cui L, Lin Q, et al. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth. Chemosphere. 2017;173:551–556. doi: 10.1016/j.chemosphere.2017.01.096
  • Faria WM, Figueiredo CCD, Coser TR, et al. Is sewage sludge biochar capable of replacing inorganic fertilizers for corn production? evidence from a two-year field experiment. Arc Agron Soil Sci. 2018;64(4):505–519. doi: 10.1080/03650340.2017.1360488
  • Lal R, Smith P, Jungkunst HF, et al. The carbon sequestration potential of terrestrial ecosystems. J Soil Water Conserv. 2018;73(6):145A–152A. doi: 10.2489/jswc.73.6.145A
  • Penido ES, Martins GC, Mendes TBM, et al. Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicol Environ Saf. 2019;172:326–333. doi: 10.1016/j.ecoenv.2019.01.110
  • Scher DP, Kelly JE, Huset CA, et al. Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Chemosphere. 2018;196:548–555. doi: 10.1016/j.chemosphere.2017.12.179
  • Méndez A, Gómez A, Paz-Ferreiro J, et al. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere. 2012;89(11):1354–1359. doi: 10.1016/j.chemosphere.2012.05.092
  • Song X, Xue X, Chen D, et al. Application of biochar from sewage sludge to plant cultivation: influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere. 2014;109:213–220. doi: 10.1016/j.chemosphere.2014.01.070
  • Xie TY, Li FC, Cao H, et al. Phytotoxicity of sewage sludge passivated by modified potassium feldspar and its effect on ryegrass growth. Environ Pollut Bioavailabil. 2023;35(1):2205011. doi: 10.1080/26395940.2023.2205011
  • Lu RK. Analytical methods for soil and agrochemistry. Beijing: Agricultural Science and Technology Press; 2000.
  • Méndez A, Gascó G, Freitas MMA, et al. Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges. Chem Eng J. 2005;108(1–2):169–177. doi: 10.1016/j.cej.2005.01.015
  • Hwang IH, Ouchi Y, Matsuto T. Characteristics of leachate from pyrolysis residue of sewage sludge. Chemosphere. 2007;68(10):1913–1919. doi: 10.1016/j.chemosphere.2007.02.060
  • Hua L, Wu W, Liu Y, et al. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ Sci Pollut Res. 2009;16(1):1–9. doi: 10.1007/s11356-008-0041-0
  • Hossain MK, Strezov V, Yin Chan K, et al. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere. 2010;78(9):1167–1171. doi: 10.1016/j.chemosphere.2010.01.009
  • Weng LP, Temminghoff EJM, van Riemsdijk WH. Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ Sci Technol. 2001;35(22):4436–4443. doi: 10.1021/es010085j
  • Weng LP, van Riemsdijk WH, Temminghoff E, et al. Measuring free metal ion concentration in the field. Abstracts of Papers, Joint Conference - Chemical Institute of Canada and American Chemical Society, Anaheim, CA. 2004;227:1202–1202.
  • Zhou X, Wang XM, Chu ZX, et al. Effects of earthworm and rice husk charcoal composting on heavy metals in industrial sludge. Ecol Environ Sci. 2020;29:378–387.
  • Arabyarmohammadi H, Darban AK, Abdollahy M, et al. Simultaneous immobilization of heavy metals in soil environment by pulp and paper derived nanoporous biochars. J Environ Health Sci Eng. 2018;16(2):109–119. doi: 10.1007/s40201-018-0294-6
  • Subedi R, Taupe N, Ikoyi I, et al. Chemically and biologically-mediated fertilizing value of manure-derived biochar. Sci Total Environ. 2016;550:924–933. doi: 10.1016/j.scitotenv.2016.01.160
  • Park JH, Choppala GK, Bolan NS, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 2011;348(1–2):439–451. doi: 10.1007/s11104-011-0948-y
  • Rizwan MS, Imtiaz M, Chhajro MA, et al. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil. Environ Technol. 2016;37(21):2679–2686. doi: 10.1080/09593330.2016.1158870
  • Baldasso V, Guillon S, Sayen E, et al. Trace metal fate in soil after application of digestate originating from the anaerobic digestion of non-source-separated organic fraction of municipal solid waste. Front Environ Sci. 2023;10:1007390. doi: 10.3389/fenvs.2022.1007390
  • Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut. 2011;159(2):474–480. doi: 10.1016/j.envpol.2010.10.016
  • Gascó G, Lobo MC. Composition of a Spanish sewage sludge and effects on treated soil and olive trees. Waste Manage. 2007;27(11):1494–1500. doi: 10.1016/j.wasman.2006.08.007
  • Van Zwieten L, Kimber S, Morris S, et al. Pyrolysing poultry litter reduces N2O and CO2 fluxes. Sci Total Environ. 2013;465:279–287. doi: 10.1016/j.scitotenv.2013.02.054
  • Van Zwieten L, Kimber S, Downie A, et al. Paper mill char: benefits to soil health and plant production; Terrigal, Australia: International Biochar Initiative Conference; 2007.
  • Lehmann J, de Silva JP Jr, Steiner C, et al. Nutrient availability and leaching in an archaeological anthrosol and a ferrasol of the central amazon basin: fertilizer, manure and charcoal amendments. Plant Soil. 2003;249(2):343–357. doi: 10.1023/A:1022833116184
  • Chan KY, Van Zwieten L, Meszaros I, et al. Agronomic values of green waste biochar as a soil amendment. Soil Res. 2007;45(8):629–634. doi: 10.1071/SR07109
  • Kammann C, Ratering S, Eckhard C, et al. Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J Environ Qual. 2012;41(4):1052–1066. doi: 10.2134/jeq2011.0132
  • Scharenbroch BC, Meza EN, Catania M, et al. Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. J Environ Qual. 2013;42(5):1372–1385. doi: 10.2134/jeq2013.04.0124
  • Gul S, Whalen JK, Thomas BW, et al. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ. 2015;206:46–49. doi: 10.1016/j.agee.2015.03.015
  • Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25. doi: 10.1016/j.nbd.2009.07.030
  • Wisnubroto EI, Hedley M, Hina K, et al. The use of biochar from biosolids on Waitarere sandy soils: effect on the growth of ryegrass New Zealand Biochar Research Centre Workshop; Palmerton North, New Zealand; 2011.
  • Jandl G, Eckhardt U, Bargmann I, et al. Hydrothermal carbonization of biomass residues: mass spectrometric characterization for ecological effects in the soil–plant system. J Environ Qual. 2013;42(1):199–207. doi: 10.2134/jeq2012.0155
  • Jeffery S, Verheijn FGA, Van Der Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment. 2011;144(1):175–187. doi: 10.1016/j.agee.2011.08.015
  • Li XF, Zhou DM. A meta-analysis on phenotypic variation in cadmium accumulation of rice and wheat: Implications for food cadmium risk control. PEDOSPHERE. 2019;29(5):545–553. doi: 10.1016/S1002-0160(19)60828-3
  • Zhou J. The effect of water flooding at grain-filling stage on the uptake of heavy metal(loid)s by rice in slightly alkaline paddy soil. Environ Sci Pollut Res. 2022;29(21):31363–31373. doi: 10.1007/s11356-021-18328-y
  • Bamdad H, Papari S, Moreside E, et al. High-temperature pyrolysis for elimination of Per- and Polyfluoroalkyl substances (PFAS) from biosolids. Processes. 2022;10(11):2187. doi: 10.3390/pr10112187
  • Li SM, Barreto V, Li RW, et al. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. J Anal Appl Pyrolysis. 2018;133:136–146. doi: 10.1016/j.jaap.2018.04.010
  • Liaw SB, Rahim MU, Wu HW. Trace elements release and particulate matter emission during the combustion of char and volatiles from in situ biosolid fast pyrolysis. Energy Fuels. 2016;30(7):5766–5771. doi: 10.1021/acs.energyfuels.6b00776
  • Hla S, Sujarittam N, Ilyushechkin A. Thermochemical conversion characteristics of biosolid samples from a wastewater treatment plant in Brisbane, Australia. Environ Chem. 2022;19(6):385–399. doi: 10.1071/EN22074