856
Views
0
CrossRef citations to date
0
Altmetric
Review Article

An overview on the modulation of pesticide detoxification mechanism via salicylic acid in the plants

, , &
Article: 2242701 | Received 12 Apr 2023, Accepted 26 Jul 2023, Published online: 15 Aug 2023

References

  • Sharma A, Kumar V, Thukral AK, et al. Responses of plants to pesticide toxicity: an overview. Planta Daninha. 2019;37(6). doi: 10.1590/s0100-83582019370100065
  • Ahmed A, Shamsi A, Bano B. Deciphering the toxic effects of iprodione, a fungicide and malathion, an insecticide on thiol protease inhibitor isolated from yellow Indian mustard seeds. Environ Toxicol Pharmacol. 2018;61:52–383. doi: 10.1016/j.etap.2018.05.019
  • Ahmad F, Kamal A, Singh A, et al. Salicylic acid modulates antioxidant system, defense metabolites, and expression of salt transporter genes in Pisum sativum under salinity stress. J Plant Growth Regul. 2020;41(5):1905–1918. doi: 10.1007/s00344-020-10271-5
  • Basirat M, Mousavi SM. Effect of foliar application of silicon and salicylic acid on regulation of yield and nutritional responses of greenhouse cucumber under high temperature. J Plant Growth Regul. 2022;41(5):1978–1988. doi: 10.1007/s00344-021-10562-5
  • Jan S, Singh R, Bhardwaj R, et al. Plant growth regulators: a sustainable approach to combat pesticide toxicity. 3 Biotech. 2020;10(11):466. doi: 10.1007/s13205-020-02454-4
  • Yüzbaşıoğlu E, Dalyan E. Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). Plant Physiol Biochem. 2019;135:322–330. doi: 10.1016/j.plaphy.2018.12.023
  • Spormann S, Soares C, Fidalgo F. Salicylic acid alleviates glyphosate-induced oxidative stress in Hordeum vulgare L. J Environ Manage. 2019;241:226–234. doi: 10.1016/j.jenvman.2019.04.035
  • Sylvestre–Gonon E, Law SR, Schwartz M, et al. Functional, structural and biochemical features of plant Serinyl-Glutathione transferases. Front Plant Sci. 2019;10:608. doi: 10.3389/fpls.2019.00608
  • Lu FF, Liu JT, Zhang N, et al. OsPAL as a key salicylic acid synthetic component is a critical factor involved in mediation of isoproturon degradation in a paddy crop. J Clean Prod. 2020;262:121476. doi: 10.1016/j.jclepro.2020.121476
  • Wildermuth MC, Dewdney J, Gang W, et al. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001;414(6863):562–565. doi: 10.1038/35107108
  • Lu YC, Zhang S, Miao S, et al. Enhanced degradation of herbicide Isoproturon in wheat rhizosphere by salicylic acid. J Agri Food Chem. 2015;63(1):92–103. doi: 10.1021/jf505117j
  • Hussain SJ, Khan NA, Anjum NA, et al. Mechanistic elucidation of salicylic acid and sulphur-induced defence systems, nitrogen metabolism, photosynthetic, and growth potential of Mungbean (Vigna radiata) under salt stress. J Plant Growth Regul. 2020;40(3):1000–1016. doi: 10.1007/s00344-020-10159-4
  • Liu T, Li T, Zhang L, et al. Exogenous salicylic acid alleviates the accumulation of pesticides and mitigates pesticide-induced oxidative stress in cucumber plants (Cucumis sativus L.). Ecotoxicol Environ Saf. 2021;208:111654. doi: 10.1016/j.ecoenv.2020.111654
  • Janda M, Ruelland E. Magical mystery tour: Salicylic acid signalling. Environ Exp Bot. 2015;114:117–128. doi: 10.1016/j.envexpbot.2014.07.003
  • Rekhter D, Lüdke D, Ding Y, et al. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science. 2019;365(6452):498–502. doi: 10.1126/science.aaw1720
  • Torrens-Spence MP, Bobokalonova A, Carballo V, et al. PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Bio Rxiv, 2019; 601948. doi: 10.1016/j.molp.2019.11.005
  • Nawrath C, Heck S, Parinthawong N, et al. EDS5, an essential component of salicylic acid–dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell. 2002;14(1):275–286. doi: 10.1105/tpc.010376
  • Lefevere H, Bauters L, Gheysen G. Salicylic acid biosynthesis in plants. Front Plant Sci. 2020;11:338. doi: 10.3389/fpls.2020.00338
  • Dean JV, Shah RP, Mohammed LA. Formation and vacuolar localization of salicylic acid glucose conjugates in soybean cell suspension cultures. Physiol Plant. 2003;118(3):328–336. doi: 10.1034/j.1399-3054.2003.00117.x
  • Pokotylo I, Kravets V, Ruelland E. Salicylic Acid Binding Proteins (SABPs): The Hidden Forefront of Salicylic Acid Signalling. Int J Mol Sci. 2019; Sep 6;20(18):4377. doi: 10.3390/ijms20184377
  • Moreau M, Westlake T, Zampogna G, et al. The Arabidopsis oligopeptidases TOP1 and TOP2 are salicylic acid targets that modulate SA-mediated signaling and the immune response. Plant J. 2013;76:603–614. doi: 10.1111/tpj.12320
  • Ding P, Ding Y. Stories of salicylic acid: a plant defense hormone. Trends Plant Sci. 2020;25(6):549–565. doi: 10.1016/j.tplants.2020.01.004
  • Huang W, Wang Y, Li X, et al. Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Mol Plant. 2020;13(1):31–41. doi: 10.1016/j.molp.2019.12.008
  • Lu H, Greenberg JT, Holuigue L. Salicylic acid signalling networks. Front Plant Sci. 2016;7:238. doi: 10.3389/fpls.2016.00238
  • Saleem M, Fariduddin Q, Castroverde CDM. Salicylic Acid: A key regulator of redox signalling and plant immunity. Plant Physiol Biochem. 2021;168:381–397. doi: 10.1016/j.plaphy.2021.10.011
  • Dongus JA, Parker JE. EDS1 signalling: at the nexus of intracellular and surface receptor immunity. Curr Opin Plant Biol. 2021;62:102039. doi: 10.1016/j.pbi.2021.102039
  • Wang L, Tsuda K, Sato M, et al. Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLOS Pathog. 2009;5(2):1000301. doi: 10.1371/journal.ppat.1000301
  • Van Verk MC, Bol JF, Linthorst HJM. WRKY transcription factors involved in activation of SA biosynthesis genes. Bmc Plant Biol. 2011;11(1):89. doi: 10.1186/1471-2229-11-89
  • Sinha AK, Jaggi M, Raghuram B, et al. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav. 2011;6(2):196–203. doi: 10.4161/psb.6.2.14701
  • Gao M, Liu J, Bi D, et al. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res. 2008;18(12):1190–1198. doi: 10.1038/cr.2008.300
  • Kato S, Yokota Y, Suzuki R, et al. Identification of a cytochrome P450 hydroxylase, CYP81E22, as a causative gene for the high sensitivity of soybean to herbicide bentazon. Theor Appl Genet. 2020;133(7):2105–2115. doi: 10.1007/s00122-020-03580-6
  • Siminszky B. Plant cytochrome P450-mediated herbicide metabolism. Phytochem Rev. 2006;5(2–3):445–458. doi: 10.1007/s11101-006-9011-7
  • Schuler MA, Rupasinghe SG. Molecular and structural perspectives on cytochrome P450s in plants. Adv Bot Res. 2011;60:263–307.
  • Bak S, Beisson F, Bishop G, et al. Cytochromes p450. Arabidopsis Book. 2011;9:e0144. doi: 10.1199/tab.0144
  • Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets. 2018;19(1):38–54. doi: 10.2174/1389450118666170125144557
  • Torra J, Rojano-Delgado AM, Rey-Caballero J, et al. Enhanced 2,4-D metabolism in two resistant Papaver rhoeas populations from Spain. Front Plant Sci. 2017;8:1584. doi: 10.3389/fpls.2017.01584
  • Höfer R, Boachon B, Renault H, et al. Dual function of the cytochrome P450 CYP76 family from Arabidopsis thaliana in the metabolism of Monoterpenols and Phenylurea Herbicides. Plant Physiol. 2014;166(3):1149–1161. doi: 10.1104/pp.114.244814
  • Khanom S, Jang J, Lee OR. Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis. J Ginseng Res. 2019;43(4):645–653. doi: 10.1016/j.jgr.2019.04.005
  • Lu FF, Xu JY, Ma LY, et al. Isoproturon-induced salicylic acid confers Arabidopsis resistance to isoproturon phytotoxicity and degradation in plants. J Agric Food Chem. 2018;66(50):13073–13083. doi: 10.1021/acs.jafc.8b04281
  • Su XN, Zhang JJ, Liu JT, et al. Biodegrading two pesticide residues in paddy plant and environment by a genetically engineered approach. J Agric Food Chem. 2019;67(17):4947–4957. doi: 10.1021/acs.jafc.8b07251
  • Lushchak VI, Matviishyn TM, Husak VV, et al. Pesticide toxicity: a mechanistic approach. Excli J. 2018;17:1101–1136. doi: 10.17179/excli2018-1710
  • Wang J, Zhang C, Shi Y, et al. Evaluation of quinclorac toxicity and alleviation by salicylic acid in rice seedlings using ground-based visible/near-infrared hyperspectral imaging. Plant Methods. 2020;16(1):3. doi: 10.1186/s13007-020-00576-7
  • Coleman JOD, Blake-Kalff MMA, Davies TGE. Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci. 1997;2(4):144–151. doi: 10.1016/S1360-1385(97)01019-4
  • Meyer AJ, Fricker MD. Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiol. 2002;130(4):1927–1937. doi: 10.1104/pp.008243
  • Ball L, Accotto GP, Bechtold U, et al. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell. 2004;16(9):2448–2462. doi: 10.1105/tpc.104.022608
  • Rouhier N, Lemaire SD, Jacquot JP. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol. 2008;59(1):143–166. doi: 10.1146/annurev.arplant.59.032607.092811
  • Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012;2012:1–26. doi: 10.1155/2012/736837
  • Cui J, Zhang R, Wu GL, et al. Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.). Arch Environ Con Tox. 2010;59(1):100–108. doi: 10.1007/s00244-009-9426-4
  • Wang J, Jiang Y, Chen S, et al. The different responses of glutathione-dependent detoxification pathway to fungicide chlorothalonil and carbendazim in tomato leaves. Chemosphere. 2010;79(9):958–965. doi: 10.1016/j.chemosphere.2010.02.020
  • Mezzari MP, Walters K, Jelı´nkova M, et al. Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiol. 2005;138(2):858–869. doi: 10.1104/pp.104.056168
  • Csiszár J, Horváth E, Váry Z, et al. Glutathione transferases upper gene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem. 2014;78:15–26. doi: 10.1016/j.plaphy.2014.02.010
  • Li G, Peng X, Wei L, et al. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene. 2013;529(2):321–325. doi: 10.1016/j.gene.2013.07.093
  • Smith AP, Nourizadeh SD, Peer WA, et al. Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. Plant J. 2003;368(4):433–442. doi: 10.1046/j.1365-313X.2003.01890.x
  • Mang HG, Kang EO, Shim JH, et al. A proteomic analysis identifies glutathione S-transferase isoforms whose abundance is differentially regulated by ethylene during the formation of early root epidermis in Arabidopsis seedlings. Biochim Biophys Acta. 2004;1676(3):231–239. doi: 10.1016/j.bbaexp.2003.12.005
  • Sappl PG, Oñate-Sánchez L, Singh KB, et al. Proteomic analysis of glutathioneS-Transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific Phi and Tau classes. Plant Mol Biol. 2004;54(2):205–219. doi: 10.1023/B:PLAN.0000028786.57439.b3
  • Keegstra K, Raikhel N. Plant glycosyltransferases. Curr Opin Plant Biol. 2001;4(3):219–224. doi: 10.1016/S1369-5266(00)00164-3
  • Gachon CMM, Langlois–Meurinne M, Saindrenan P. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci. 2005;10(11):542–549. doi: 10.1016/j.tplants.2005.09.007
  • Lu YC, Zhang S, Yang H. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid. J Hazard Mater. 2015;283:806–814. doi: 10.1016/j.jhazmat.2014.10.034
  • Peterson MA, McMaster SA, Riechers DE, Skelton J, Stahlman PW. 2,4–D past, present, and future: a review. Weed Technol. 2016; 30, 303–345. https://www.jstor.org/stable/24856067
  • Liscombe DK, Louie GV, Noel JP. Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat Prod Rep. 2012;29(10):1238–1250. doi: 10.1039/c2np20029e
  • Walker AM, Sattler SA, Regner MR, et al. Determination of the structure and catalytic mechanism of sorghum bicolor caffeoyl–CoA O–methyltransferase. Plant Physiol. 2016;172:78–92. doi: 10.1104/pp.16.00845
  • Sciabola S, Goetz GH, Bai G, et al. Systematic N-methylation of oxytocin: Impact on pharmacology and intramolecular hydrogen bonding network. Bioorg Med Chem. 2016;24(16):3513–3520. doi: 10.1016/j.bmc.2016.05.062
  • Pan B, Jiang L, Wang B, et al. Effects of flight parameters of diesel six-rotor UAV on deposition distribution of fogdrops in litchi tree canopy. Chin J Trop Crops. 2021;42:213.
  • Zhang JJ, Yang H. Metabolism and detoxification of pesticides in plants. Sci Total Environ. 2021;790:148034. doi: 10.1016/j.scitotenv.2021.148034
  • Zhang JJ, Lu YC, Zhang SH, et al. Identification of transcriptome involved in atrazine detoxification and degradation in alfalfa (Medicago sativa) exposed to realistic environmental contamination. Ecotox Environ Safe. 2016;130:103–112. doi: 10.1016/j.ecoenv.2016.04.009
  • Kang J, Park J, Choi H, et al. Plant ABC Transporters. J Obstet Gynaecol. 2011;9:e0153. doi: 10.1199/tab.0153
  • Frelet–Barrand A, Kolukisaoglu HÜ, Plaza S, et al. Comparative mutant analysis of Arabidopsis ABCC–type ABC transporters: AtMRP2 contributes to detoxification, vacuolar organic anion transport and chlorophyll degradation. Plant Cell Physiol. 2008;49(4):557–569. doi: 10.1093/pcp/pcn034
  • Qiao Y, Jie Chen Z, Liu J, Nan Z, Yang H. Genome-wide identification of Oryza sativa: A new insight for advanced analysis of ABC transporter genes associated with the degradation of four pesticides. Gene. 2022; 834:146613. doi: 10.1016/j.gene.2022.146613
  • Eichhorn H. Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. J. Exp. Bot. 2006;57(10):2193–2201. doi: 10.1093/jxb/erj179
  • Zhang JJ, Wang YK, Zhou JH, et al. Reduced phytotoxicity of propazine on wheat, maize and rapeseed by salicylic acid. Ecotoxicol Environ Saf. 2018;162:42–50. doi: 10.1016/j.ecoenv.2018.06.068
  • Li X, Riaz M, Song B, et al. Exogenous salicylic acid alleviates fomesafen toxicity by improving photosynthetic characteristics and antioxidant defense system in sugar beet. Ecotoxicol Environ Saf. 2022;238:113587. doi: 10.1016/j.ecoenv
  • Shopova E, Brankova L, Katerova Z, et al. Salicylic acid pretreatment modulates wheat response to glyphosate. Crops. 2021;1 (2) 88–96. doi: 10.3390/crops1020009
  • Liu T, Yuan C, Gao Y, et al. Exogenous salicylic acid mitigates the accumulation of some pesticides in cucumber seedlings under different cultivation methods. Ecotoxicol. Environ. Safe., 2020; 198, 110680. doi: 10.1016/j.ecoenv.2020.110680
  • Li YF, Huang LL, Liu XL, et al. Exogenous salicylic acid alleviates halosulfuron-methyl toxicity by coordinating the antioxidant system and improving photosynthesis in soybean (Glycine max Merr.) Acta Physiol. Plant. 2020;42(5):85. doi: 10.1007/s11738-020-03075-3
  • Akbulut GB, Yigit E, Kaya A, Aktas A. Effects of salicylic acid and organic selenium on wheat (Triticum aestivum L.) exposed to fenoxaprop-p-ethyl. Ecotoxicol. Environ. Saf. 2018; 148, 901–909. doi: 10.1016/j.ecoenv.2017.11.053
  • Fatma F, Kamal A, Srivastava A. Exogenous Application of Salicylic Acid Mitigates the Toxic Effect of Pesticides in Vigna radiata (L.) Wilczek. J. Plant Growth Regul. 2018;37 (4), 1185–1194. doi: 10.1007/s00344-018-9819-6
  • Wang J, Lv M, Islam F, Gill RA, et al. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity. Ecotoxicol. Environ. Saf. 2016;133, 146–56. doi: 10.1016/j.ecoenv.2016.07.002
  • Wang C, Zhang Q. Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum). Ecotoxicol. Environ. Saf. 2017;137, 218-224. doi: 10.1016/j.ecoenv.2016.12.011
  • Singh H, Singh NB, Singh A, Hussain I. Exogenous Application of Salicylic Acid to Alleviate Glyphosate Stress in Solanum lycopersicum. Int. J. Veg. Sci. 2017;23 (6), 552–566. doi: 10.1080/19315260.2017.1347845
  • Fayez K, Ali EF. Impact of Glyphosate Herbicide and Salicylic Acid on Seed Germination, Cell Structure and Physiological Activities of Faba Bean (Vicia faba L.) Plant. Annu. Res. Rev. Biol. 2017; 17 (4), 1–15. doi: 10.9734/ARRB/2017/36097
  • Singh H, Singh NB, Singh A, Hussain I, Yadav V. Physiological and biochemical effects of salicylic acid on Pisum sativum exposed to is oproturon. Arch Agron Soil Sci. 2016;62 (10), 1425–1436. doi: 10.1080/03650340/2016/1144926
  • Akbulut GB, Yigit E, Bayram D. Investigation of the Effects of Salicylic Acid on Some Biochemical Parameters in Zea mays to Glyphosate Herbicide. J Environ Anal Toxicol. 2014; 5, 1–9. doi:10.4172/2161/0525/1000271
  • Bayram DD, Yigit E, Akbulut GB. The Effects of Salicylic Acid on Helianthus annuus L. Exposed to Quizalofop-P-Ethyl. Am. J. Plant Sci. 2015;6 (14), 2412–2425. doi: 10.4236/ajps.2015.614244
  • Fayez K, Radwan DE, Mohamed AK, Abdel-Rahmana ARM. Alteration in protein contents and polypeptides of peanut plants due to herbicides and salicylic acid treatments. J Environ Stud. 2013; 1 (1), 27–3. doi: 10.21608/jesj.2013.192105
  • Radwan DEM, Soltan DM. The negative effects of clethodim in photosynthesis and gas-exchange status of maize plants are ameliorated by salicylic acid pretreatment. Photosynthetica. 2012;50:171–179. doi: 10.1007/s11099-012-0016-8
  • Liang L, Lu YL, Yang H. Toxicology of isoproturon to the food crop wheat as affected by salicylic acid. Environ. Sci. Pollut. Res. Int. 2012; 19 (6), 2044–2054. Doi: 10.1007/s11356-011-0698-7
  • Singh H, Yadav K, Amist N, Hussain I, Yadav V. Mitigating effects of salicylic acid against herbicidal stress. J Stress Physiol Biochem. 2012;8 (4), 27–35.
  • Ananieva EA, Christov KN, Popova LP. Exogenous treatment with Salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to Paraquat. J Plant Physiol. 2004;161(3):319–328. doi: 10.1078/0176-1617-01022
  • Ananieva EA, Alexieva VS, Popova LP. Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. J. Plant Physiol. 2002;159(7):685–693. doi: 10.1078/0176-1617-0706