1,240
Views
0
CrossRef citations to date
0
Altmetric
Review article

Catalytic depolymerization of lignin by metal and metal oxide: a review

, , , , , , , , & show all
Article: 2263168 | Received 05 Jul 2023, Accepted 20 Sep 2023, Published online: 27 Sep 2023

References

  • Zhou N, Thilakarathna WPDW, He QS, et al. A review: depolymerization of lignin to generate high-value bio-products: opportunities, challenges, and prospects. Front Energy Res. 2022;9:758744. doi: 10.3389/fenrg.2021.758744
  • Hassan EA-E, Amr AE-H. Lignin biodegradation with ligninolytic bacterial strain and comparison of Bacillus subtilis and Bacillus sp. Isolated from Egyptian soil. Am Eurasian J Agric Environ Sci. 2009;5(1):39–480.
  • J Alejandro Poveda Giraldo, Solarte Toro J Camilo, Alzate C Ariel Cardona. The potential use of lignin as a platform product in biorefineries: a review. Renew Sust Energ Rev. 2021;138:110688. doi: 10.1016/j.rser.2020.110688
  • Chen X, Li S, Liu Z, et al. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. Biores Technol. 2019;287:121493. doi: 10.1016/j.biortech.2019.121493
  • Kumar A, Biswas B, Saini K, et al. Py-GC/MS study of prot lignin with cobalt impregnated titania, ceria and zirconia catalysts. Renew Energ. 2021;172:121–129. doi: 10.1016/j.renene.2021.03.011
  • Chen Z, Wan C. Biological valorization strategies for converting lignin into fuels and chemicals. Renew Sust Energ Rev. 2017;73:610–621. doi: 10.1016/j.rser.2017.01.166
  • Börcsök Z, Pásztory Z. The role of lignin in wood working processes using elevated temperatures: an abbreviated literature survey. Eur J Wood Wood Prod. 2020;79(3):511–526. doi: 10.1007/s00107-020-01637-3
  • Xu C, Ferdosian F. Conversion of lignin into bio-based chemicals and materials (Green Chemistry and Sustainable Technology). Berlin: Springer; 2017.
  • Chio C, Sain M, Qin W. Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sust Energ Rev. 2019;107:232–249. doi: 10.1016/j.rser.2019.03.008
  • Wan Z, Zhang H, Guo Y, et al. Advances in catalytic depolymerization of lignin. ChemistrySelect. 2022;7(40):02582. doi: 10.1002/slct.202202582
  • Ročnik T, Likozar B, Jasiukaitytė Grojzdek E, et al. Catalytic lignin valorisation by depolymerisation, hydrogenation, demethylation and hydrodeoxygenation: mechanism, chemical reaction kinetics and transport phenomena. Chem Eng J. 2022;448:137309. doi: 10.1016/j.cej.2022.137309
  • Wang Y, Wei L, Hou Q, et al. A review on catalytic depolymerization of lignin towards high-value chemicals: solvent and catalyst. Fermentation-Basel. 2023;9(4):386. doi: 10.3390/fermentation9040386
  • Sun R-C. Lignin source and structural Characterization. ChemSuschem. 2020;13(17):4385–4393. doi: 10.1002/cssc.202001324
  • Zakzeski J, Bruijnincx PCA, Jongerius AL, et al. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev. 2010;110(6):3552–3599. doi: 10.1021/cr900354u
  • Shen D, Liu G, Zhao J, et al. Thermo-chemical conversion of lignin to aromatic compounds: effect of lignin source and reaction temperature. J Anal Appl Pyrolysis. 2015;112:56–65. doi: 10.1016/j.jaap.2015.02.022
  • Wu Z, Lei H, Jiang Y, et al. Recent advances in the acid-catalyzed conversion of lignin. Biomass Convers Biorefin. 2023;13(1):519–539. doi: 10.1007/s13399-020-00976-8
  • Fujimoto A, Matsumoto Y, Chang H, et al. Quantitative evaluation of milling effects on lignin structure during the isolation process of milled wood lignin. J Wood Sci. 2005;51(1):89–91. doi: 10.1007/s10086-004-0682-7
  • Björkman A. Isolation of lignin from finely divided wood with neutral solvents. Nature. 1954;174(4440):1057–1058. doi: 10.1038/1741057a0
  • Feofilova EP, Mysyakina IS. Lignin: chemical structure, biodegradation, and practical application (a review). Appl Biochem Microbiol. 2016;52(6):573–581. doi: 10.1134/S0003683816060053
  • Adler E. Lignin Chemistry - past, present and future. Wood Sci Technol. 1977;11(3):169–218. doi: 10.1007/BF00365615
  • Tran NT, Ko Y, Kim S, et al. Microwave-assisted phenolation of acid-insoluble Klason lignin and its application in adhesion. Green Chem. 2022;24(5):2051–2061. doi: 10.1039/D1GC04783C
  • Shinde SD, Meng X, Kumar R, et al. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem. 2018;20(10):2192–2205. doi: 10.1039/C8GC00353J
  • Sandouqa A, Al Hamamre Z, Asfar J. Structural characteristics of lignin extracted from Jordanian olive cake using different fractionation conditions. Energy Sources Part A-Recovery Util Environ Effects. 2023;45(2):3831–3842. doi: 10.1080/15567036.2019.1668877
  • Yu H, Zhou H, Liao Y, et al. Sources of industrial lignin and progress in its modification and application. Corporate Technol Dev. 2010;19–23.
  • Lora J. Industrial commercial lignins Sources, properties and applications-chapter. Amsterdam: Elsevier. 2008;10:225.
  • Sun Z, Fridrich B, De Santi A, et al. Bright side of lignin depolymerization: toward New platform chemicals. Chem Rev. 2018;118(2):614–678. doi: 10.1021/acs.chemrev.7b00588
  • Lehto J, Alén R. Alkaline pre-treatment of hardwood chips prior to delignification. J Wood Chem Technol. 2013;33(2):77–91. doi: 10.1080/02773813.2012.748077
  • Carvajal JC, Gómez Á, Cardona CA. Comparison of lignin extraction processes: economic and environmental assessment. Biores Technol. 2016;214:468–476. doi: 10.1016/j.biortech.2016.04.103
  • Kumar P, Barrett DM, Delwiche MJ, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. 2009;48(8):3713–3729. doi: 10.1021/ie801542g
  • Bergrath J, Rumpf J, Burger R, et al. Beyond yield optimization: the impact of organosolv process parameters on lignin structure. Macromol Mater Eng. 2023;2300093. doi: 10.1002/mame.202300093
  • Scholze B, Meier D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J Anal Appl Pyrolysis. 2001;60(1):41–54. doi: 10.1016/S0165-2370(00)00110-8
  • Avellar BK, Glasser WG. Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass Bioenerg. 1998;14(3):205–218. doi: 10.1016/S0961-9534(97)10043-5
  • Shu B, Ren Q, Hong L, et al. Effect of Steam explosion Technology main parameters on moso bamboo and poplar fiber. J Ren Mater. 2021;9(3):585–597. doi: 10.32604/jrm.2021.012932
  • Chen H, Liu Z. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J. 2015;10(6):866–885. doi: 10.1002/biot.201400705
  • Alvira P, José Negro M, Ballesteros I, et al. Steam explosion for wheat straw pretreatment for sugars production. Bioethanol. 2016;2(1):66–75. doi: 10.1515/bioeth-2016-0003
  • Pereira Marques F, Kelly Lima Soares A, Lomonaco D, et al. Steam explosion pretreatment improves acetic acid organosolv delignification of oil palm mesocarp fibers and sugarcane bagasse. Int J Biol Macromol. 2021;175:304–312. doi: 10.1016/j.ijbiomac.2021.01.174
  • Cara C, Ruiz E, Ballesteros M, et al. Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel. 2008;87:692–700. doi: 10.1016/j.fuel.2007.05.008
  • Tolbert A, Akinosho H, Khunsupat R, et al. Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels, Bioprod Bioref. 2014;8(6):836–856. doi: 10.1002/bbb.1500
  • Zhao Z, Meng X, Scheidemantle B, et al. Cosolvent enhanced lignocellulosic fractionation tailoring lignin chemistry and enhancing lignin bioconversion. Biores Technol. 2022;347:126367. doi: 10.1016/j.biortech.2021.126367
  • Patri AS, Mostofian B, Yunqiao P, et al. A multifunctional Cosolvent pair reveals molecular principles of biomass deconstruction. J Am Chem Soc. 2019;141(32):12545–12557. doi: 10.1021/jacs.8b10242
  • Meng X, Parikh A, Seemala B, et al. Chemical transformations of poplar lignin during Cosolvent enhanced lignocellulosic fractionation process. ACS Sustain Chem Eng. 2018;6(7):8711–8718. doi: 10.1021/acssuschemeng.8b01028
  • Reiter J, Strittmatter H, Wiemann LO, et al. Enzymatic cleavage of lignin β-O-4 aryl ether bonds via net internal hydrogen transfer. Green Chem. 2013;15(5):1373. doi: 10.1039/c3gc40295a
  • Bundhoo ZMA. Microwave-assisted conversion of biomass and waste materials to biofuels. Renew Sust Energ Rev. 2018;82:1149–1177. doi: 10.1016/j.rser.2017.09.066
  • De La Hoz A, Díaz Ortiz Á, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev. 2005;34(2):164–178. doi: 10.1039/B411438H
  • Liew RK, Chai C, Nai Yuh Yek P, et al. Innovative production of highly porous carbon for industrial effluent remediation via microwave vacuum pyrolysis plus sodium-potassium hydroxide mixture activation. J Clean Prod. 2019;208:1436–1445. doi: 10.1016/j.jclepro.2018.10.214
  • Zhou M, Sharma BK, Liu P, et al. Microwave assisted depolymerization of alkaline lignin over hydrotalcite-based CuNiAl mixed oxides. ACS Sustain Chem Eng. 2018;6(9):11519–11528. doi: 10.1021/acssuschemeng.8b01697
  • Song Q, Wang F, Xu J. Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chem Comm. 2012;56(56):7019–7021. doi: 10.1039/c2cc31414b
  • Zuliani A, Balu AM, Luque R. Efficient and environmentally friendly microwave-assisted synthesis of catalytically active magnetic metallic Ni nanoparticles. ACS Sustain Chem Eng. 2017;5(12):11584–11587. doi: 10.1021/acssuschemeng.7b02945
  • Toledano A, Serrano L, Pineda A, et al. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: catalyst screening. Appl Catal B Environ. 2014;145:43–55. doi: 10.1016/j.apcatb.2012.10.015
  • Liu P, Chen C, Zhou M, et al. Catalytic lignin valorization over HSZ-supported CuNiAl-based catalysts with microwave heating. New J Chem. 2021;45(18):8258–8268. doi: 10.1039/D0NJ05371F
  • Panyadee R, Saengsrichan A, Posoknistakul P, et al. Lignin-derived syringol and acetosyringone from palm bunch using heterogeneous oxidative depolymerization over mixed metal oxide catalysts under microwave heating. Molecules. 2021;26(24):7444. doi: 10.3390/molecules26247444
  • Agarwal A, Rana M, Hun Park J. Advancement in technologies for the depolymerization of lignin. Fuel Process Technol. 2018;181:115–132. doi: 10.1016/j.fuproc.2018.09.017
  • Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 2012;38:68–94. doi: 10.1016/j.biombioe.2011.01.048
  • Jackson MA, Compton DL, Boateng AA. Screening heterogeneous catalysts for the pyrolysis of lignin. J Anal Appl Pyrolysis. 2009;85(1–2):226–230. doi: 10.1016/j.jaap.2008.09.016
  • Jia Q, Zhu L, Fan M, et al. Catalytic pyrolysis of lignin for directional production of p-xylene over metal oxides-modified HZSM-5 catalysts. Chin J Org Chem. 2018;38(8):2101–2108. doi: 10.6023/cjoc201803039
  • Won Ryu H, Won Lee H, Jae J, et al. Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: effect of magnesium oxide catalyst. Energy. 2019;179:669–675. doi: 10.1016/j.energy.2019.05.015
  • Vincent Sahayaraj D, Lusi A, Kohler AJ, et al. An effective strategy to produce highly amenable cellulose and enhance lignin upgrading to aromatic and olefinic hydrocarbons. Energy Environ Sci. 2023;16(1):97–112. doi: 10.1039/D2EE02304K
  • Zhang B, Li W, Dou X, et al. Catalytic depolymerization of Kraft lignin to produce liquid fuels via Ni–Sn metal oxide catalysts. Sustain EnergFuels. 2020;4(3):1332–1339. doi: 10.1039/C9SE01089K
  • Pu L, Wang X, Cao Q, et al. Novel nonprecious metal loading multi-metal oxide catalysts for lignin depolymerization. Energ Fuels. 2019;33(7):6491–6500. doi: 10.1021/acs.energyfuels.9b01218
  • Insyani R, Kim MK, Choi JW, et al. Selective hydrodeoxygenation of biomass pyrolysis oil and lignin-derived oxygenates to cyclic alcohols using the bimetallic NiFe core-shell supported on TiO2. Chem Eng J. 2022;446:136578. doi: 10.1016/j.cej.2022.136578
  • Mullen CA, Boateng AA. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process Technol. 2010;91(11):1446–1458. doi: 10.1016/j.fuproc.2010.05.022
  • Hendry A, Åhlén M, Fernandes T, et al. Catalytic cracking of Etek lignin with zirconia supported metal-oxides for alkyl and alkoxy phenols recovery. Biores Technol. 2020;317:124008. doi: 10.1016/j.biortech.2020.124008
  • Atanda L, Batalha N, Stark T, et al. Hybridization of ZSM-5 with spinel oxides for biomass vapour upgrading. ChemCatchem. 2020;12(5):1403–1412. doi: 10.1002/cctc.201902023
  • Yeardley A, Bagnato G, Sanna A. Effect of Ceria addition to Na2O-ZrO2 catalytic mixtures on lignin waste ex-situ pyrolysis. Molecules. 2021;26(4):827. doi: 10.3390/molecules26040827
  • Zheng A, Huang Z, Wei G, et al. Controlling deoxygenation pathways in catalytic fast pyrolysis of biomass and its components by using metal-oxide nanocomposites. iScience. 2020;23(1):100814. doi: 10.1016/j.isci.2019.100814
  • Wang S, Li Z, Bai X, et al. Catalytic pyrolysis of lignin with red mud derived hierarchical porous catalyst for alkyl-phenols and hydrocarbons production. J Anal Appl Pyrolysis. 2018;136:8–17. doi: 10.1016/j.jaap.2018.10.024
  • Tian Q, Xu P, Huang D, et al. The driving force of biomass value-addition: selective catalytic depolymerization of lignin to high-value chemicals. J Environ Chem Eng. 2023;11(3):109719. doi: 10.1016/j.jece.2023.109719
  • Liu X, Bouxin FP, Fan J, et al. Recent advances in the catalytic depolymerization of lignin towards phenolic chemicals: a review. ChemSuschem. 2020;13(17):4296–4317. doi: 10.1002/cssc.202001213
  • Bourbiaux D, Pu J, Rataboul F, et al. Reductive or oxidative catalytic lignin depolymerization: an overview of recent advances. CatalToday. 2021;373:24–37. doi: 10.1016/j.cattod.2021.03.027
  • Ye K, Liu Y, Wu S, et al. A review for lignin valorization: challenges and perspectives in catalytic hydrogenolysis. Ind Crops Prod. 2021;172:114008. doi: 10.1016/j.indcrop.2021.114008
  • Huang S, Mahmood N, Tymchyshyn M, et al. Reductive depolymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source. Biores Technol. 2014;171:95–102. doi: 10.1016/j.biortech.2014.08.045
  • Cheng C, Shen D, Gu S, et al. State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Catal Sci Technol. 2018;8(24):6275–6296. doi: 10.1039/C8CY00845K
  • Wang S, Zhang K, Li H, et al. Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nat Commun. 2021;12(1):416. doi: 10.1038/s41467-020-20684-1
  • Gómez Monedero B, Pilar RM, Bimbela F, et al. Selective depolymerization of industrial lignin-containing stillage obtained from cellulosic bioethanol processing. Fuel Processing Technol. 2018;173:165–172. doi: 10.1016/j.fuproc.2018.01.021
  • Héroguel F, Nguyen XT, Luterbacher JS. Catalyst support and solvent effects during lignin depolymerization and hydrodeoxygenation. ACS Sustain Chem Eng. 2019;7(20):16952–16958. doi: 10.1021/acssuschemeng.9b03843
  • Zhang J, Su Z, Wu Z, et al. Basic carrier promoted Pt-catalyzed hydrogenolysis of alkaline lignin. CatalToday. 2021;365:193–198. doi: 10.1016/j.cattod.2020.06.027
  • Jiang M, Chen X, Wang L, et al. Anchoring single Ni atoms on CeO2 nanospheres as an efficient catalyst for the hydrogenolysis of lignin to aromatic monomers. Fuel. 2022;324:124499. doi: 10.1016/j.fuel.2022.124499
  • Bie L, Liu F, Zong Z, et al. Selective hydrogenolysis of C-O bonds in benzyloxybenzene and dealkaline lignin to valuable aromatics over Ni/TiN. Fuel Process Technol. 2020;209:106523. doi: 10.1016/j.fuproc.2020.106523
  • Yu H, Yang X, Wu Y, et al. Bimetallic Ru-Ni/TiO2 catalysts for hydrogenation of N-ethylcarbazole: role of TiO2 crystal structure. J Energy Chem. 2020;40:188–195. doi: 10.1016/j.jechem.2019.04.009
  • Luo Z, Zheng Z, Li L, et al. Bimetallic Ru–Ni catalyzed aqueous-phase guaiacol hydrogenolysis at low H2 pressures. ACS Catal. 2017;7(12):8304–8313. doi: 10.1021/acscatal.7b02317
  • Shu R, Zhou L, Zhu Z, et al. Enhanced hydrogenolysis of enzymatic hydrolysis lignin over in situ prepared RuNi bimetallic catalyst. Int J Hydrogen Energy. 2022;47(98):41564–41572. doi: 10.1016/j.ijhydene.2022.02.027
  • Zhu J, Chen F, Zhang Z, et al. M-Gallate (M = Ni, Co) metal–organic framework-derived Ni/C and bimetallic Ni–Co/C catalysts for lignin conversion into Monophenols. ACS Sustainable Chem Eng. 2019;7(15):12955–12963. doi: 10.1021/acssuschemeng.9b02005
  • Gao Y, Ma H, Rao Y, et al. Selective hydrogenolysis of lignin in the presence of Ni3Fe1 alloy supported on zirconium phosphate. Chem Eng Sci. 2023;271:118570. doi: 10.1016/j.ces.2023.118570
  • Gurrala L, Midhun Kumar M, Sharma S, et al. Selective production of C9 monomeric phenols via hydrogenolysis of lignin using Pd-(W/zr/mo oxides)-supported on biochar catalyst. Fuel. 2022;308:121818. doi: 10.1016/j.fuel.2021.121818
  • Yan B, Ding W, Lin X, et al. Selective hydrogenolysis of lignin for phenolic monomers with a focus on β-O-4 cleavage and C = O hydrodeoxygenation. Fuel. 2022;320:123732. doi: 10.1016/j.fuel.2022.123732
  • Chui M, Metzker G, Bernt CM, et al. Probing the lignin disassembly pathways with modified catalysts based on Cu-doped porous metal oxides. ACS Sustain Chem Eng. 2017;5(4):3158–3169. doi: 10.1021/acssuschemeng.6b02954
  • Barta K, Ford PC. Catalytic conversion of nonfood woody biomass solids to organic liquids. Acc Chem Res. 2014;47(5):1503–1512. doi: 10.1021/ar4002894
  • Bernt CM, Manesewan H, Chui M, et al. Temperature tuning the catalytic reactivity of Cu-doped porous metal oxides with lignin models. ACS Sustain Chem Eng. 2018;6(2):2510–2516. doi: 10.1021/acssuschemeng.7b03969
  • Shen X, Huang P, Wen J, et al. Research status of lignin oxidative and Reductive depolymerization. Progress In Chemistry. 2017;29:162–178.
  • Zhang Z, Gogoi P, Geng Z, et al. Low temperature lignin depolymerization to aromatic compounds with a redox couple catalyst. Fuel. 2020;281:118799. doi: 10.1016/j.fuel.2020.118799
  • Liu C, Wu S, Zhang H, et al. Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review. Fuel Process Technol. 2019;191:181–201. doi: 10.1016/j.fuproc.2019.04.007
  • Almada CC, Kazachenko A, Fongarland P, et al. Supported-metal catalysts in upgrading lignin to aromatics by oxidative depolymerization. Catalysts. 2021;11(4):467. doi: 10.3390/catal11040467
  • Du B, Liu C, Wang X, et al. Renewable lignin-based carbon nanofiber as Ni catalyst support for depolymerization of lignin to phenols in supercritical ethanol/water. Renew Energy. 2020;147:1331–1339. doi: 10.1016/j.renene.2019.09.108
  • Panpian P, Pham LH, Kongparakul S, et al. One-pot upgrading of coconut coir lignin over high-efficiency Ni2P catalysts. J Environ Chem Eng. 2021;9(6):106702. doi: 10.1016/j.jece.2021.106702
  • Ma R, Sanyal U, Olarte MV, et al. Role of peracetic acid on the disruption of lignin packing structure and its consequence on lignin depolymerisation. Green Chem. 2021;23(21):8468–8479. doi: 10.1039/D1GC02300D
  • Luo H, Wang L, Li G, et al. Nitrogen-doped carbon-modified cobalt-nanoparticle-catalyzed oxidative cleavage of lignin β-O-4 model compounds under mild conditions. ACS Sustain Chem Eng. 2018;6(11):14188–14196. doi: 10.1021/acssuschemeng.8b02802
  • Kumar A, Biswas B, Kaur R, et al. Oxidative catalytic valorization of industrial lignin into phenolics: effect of reaction parameters and metal oxides. Biores Technol. 2022;352:127032. doi: 10.1016/j.biortech.2022.127032
  • Dong Q, Tian Z, Song W, et al. Catalytic oxidation of lignin and model compounds over nano europium oxide. Colloids Surf A Physicochem Eng Asp. 2021;626:126846. doi: 10.1016/j.colsurfa.2021.126846
  • Ren X, Wang P, Han X, et al. Depolymerization of lignin to aromatics by selectively oxidizing cleavage of C–C and C–O bonds using CuCl2/Polybenzoxazine catalysts at room temperature. ACS Sustain Chem Eng. 2017;5(8):6548–6556. doi: 10.1021/acssuschemeng.7b00732
  • Xiu P, Lu X, Wang D, et al. Efficient depolymerization of alkaline lignin to phenolic monomers over non-precious bimetallic Ni–Fe/CeO2-Al2O3 catalysts. Biomass Convers Bior. 2022. doi:10.1007/s13399-022-02574-2
  • Chen J, Xiu P, Gu X. Hydrogenolysis of alkali lignin via a non-precious Co-Mo bimetallic catalyst supported on attapulgite-Ce0.75Zr0.25O2. Biomass Convers Biorefin. 2022;13. doi: 10.1007/s13399-022-03166-w
  • Chen M, Dai W, Wang Y, et al. Selective catalytic depolymerization of lignin to guaiacols over Mo-Mn/sepiolite in supercritical ethanol. Fuel. 2023;333:126365. doi: 10.1016/j.fuel.2022.126365
  • Mottweiler J, Puche M, Räuber C, et al. Copper- and vanadium-catalyzed oxidative cleavage of lignin using Dioxygen. ChemSuschem. 2015;8(12):2106–2113. doi: 10.1002/cssc.201500131
  • Dai J, Patti AF, Saito K. Recent developments in chemical degradation of lignin: catalytic oxidation and ionic liquids. Tetrahedron Lett. 2016;57(45):4945–4951. doi: 10.1016/j.tetlet.2016.09.084