497
Views
0
CrossRef citations to date
0
Altmetric
Review article

Is there future of sequential chemical extraction for speciation analysis of metal(loid)s in plants?

, , , &
Article: 2263641 | Received 17 Jul 2023, Accepted 21 Sep 2023, Published online: 03 Oct 2023

References

  • Yang J, Sun L, Shen X, et al. An overview of the methods for analyzing the chemical forms of metals in plants. Int J Phytoremedi. 2022;24(13):1418–505. doi: 10.1080/15226514.2022.2033687
  • Bacon JR, Davidson CM. Is there a future for sequential chemical extraction. Analyst. 2008;133(1):25–46.
  • Walker CH, Hopkin SP, Sibly RM, Peakall DB. Principles of Ecotoxicology. 3rd ed. Phoenix (AZ): Taylor & Francis Group; 2006.
  • Marchese M, Gagneten AM, Parma MJ, et al. Accumulation and elimination of chromium by freshwater species exposed to spiked sediments. Arch Environ Contam Toxicol. 2008;55(4):603–609. doi: 10.1007/s00244-008-9139-0
  • Stanislawska M, Janasik B, Wasowicz W. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in air at the workplace. Talanta. 2013;117:14–19.
  • Álvarez C R, Jiménez Moreno M, Guzmán Bernado FJ, et al. Mercury methylation, uptake and bioaccumulation by the earthworm Lumbricus terrestris (Oligochaeta). Appl Soil Ecol. 2014;84:45–53.
  • Machado A, Šlejkovec Z, Van Elteren JT, et al. Arsenic speciation in transplanted lichens and tree bark in the framework of a biomonitoring scenario. J Atmos Chem. 2006;53(3):237–249. doi: 10.1007/s10874-006-9013-2
  • Manceau A, Marcus MA, Tamura N, et al. Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Cosmochim Acta. 2002;68:2467.
  • Isaure MP, Laboudigue A, Manceau A, et al. Quantitative Zn speciation in a contaminated dredged sediments by µ-PIXE, µ-SXRF, EXAFS spectroscopy and principal component analysis. Geochim Cosmochim Acta. 2002;66:1549.
  • Bang JS, Hesterberg D. Dissolution of trace elements contaminants from two coastal plain soil as affected by pH. J Environ Qual. 2004;33:891.
  • Taylor MP, MacFarlane GR, Merrington G. Advances in metal speciation in plants, algae and terrestrial and aquatic systems. Environ Chem. 2019;16(2):73–88.
  • Klinkenberg M, Scheckel KG. The role of synchrotron-based X-ray absorption spectroscopy in advancing understanding of metal behavior in the environment. Curr Opin Environ Sci Health. 2018;4:42–48.
  • Donner E, Ryan CG, Howard DL. Nuclear magnetic resonance spectroscopy in speciation analysis of arsenic, antimony, and thallium. Anal Bioanaly Chem. 2016;408(20):5421–5433.
  • Michalke B. Element speciation definitions, analytical methodology, and some examples. Ecotoxicol Environ Saf. 2003;56(1):122–139. doi: 10.1016/S0147-6513(03)00056-3
  • Ure AM. Trace element speciation in soil, soil extracts and solutions. Microchim Acta. 1991;2:49.
  • Hlavay J, Prohaska T, Weisz M, et al. Determination of trace elements bound to soil and sediment fractions (IUPAC technical report). Pure Appl Chem. 2004;76(2):415. doi: 10.1351/pac200476020415
  • Kroukamp EM, Wondimu T, Forbes PBC. Metal and metalloids speciation in plants: overview, instrumentation, approaches and commonly assessed elements. Trends Analyt Chem. 2016;77:87–99.
  • Tessier AP, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51(7):844–851. doi: 10.1021/ac50043a017
  • Rauret G, López-Sánchez JF, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monitor. 1999;1:57–61.
  • Ure AM, Quevauviller P, Muntau H, et al. Speciation of heavy metals in soils and sediments, an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities. Int J Environ Anal Chem. 1993;51:135.
  • Larios R, Fernández-Martínez R, LeHecho I, et al. A methodological approach to evaluate arsenic speciation and bioaccumulation in different plant species from two highly polluted mining areas. Sci Total Environ. 2012;414:600–607. doi: 10.1016/j.scitotenv.2011.09.051
  • Kaplan O, Kaya G, Yaman M. Sequential and selective extraction of copper in different soil phases and plant parts from former industrialized area. Commun Soil Sci Plant Anal. 2011;42(19):2391–2401. doi: 10.1080/00103624.2011.605497
  • Gleyzes C, Tellier S, Astruc M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Analyt Chem. 2002;21(6):451–467.
  • Cao XD, Wang XR, Zhao GW. Assessment of the bioavailability of rare earth elements in soils by chemical fractionation and multiple regression analysis. Chemosphere. 2000;40(1):23–28.
  • Xu J, Bao Z, Yang J, et al. Chemical forms of Pb, Cd and Cu in crops. Chin J Appl Ecol. 1991;3:244–248.
  • Yasuda O, Kazuko Y, Masao E. Effects of differences in calcium supply, leaf position, and individual growth stage on the distribution of chemistry morphology of calcium in paddy rice organism. Japanese J Of Fertilizer Sci. 1970;41(1):19–26.
  • Koji A, Kozo K, Yoshio K. Manganese absorption and migration in Malvacaido and Mitsubakaidō: Studies on manganese over absorption in fruit trees (part 1). Nipp J Fertilizer Sci. 1980;51:405–410.
  • Hui-Mei WU, Fei-Li LI, Mou HQ, et al. Analysis of heavy metal fractions in plants by two steps sequential extraction procedure. Environ Sci Technol. 2012;35:133–137.
  • Ota A, Yamamoto K, Deguqi, M. The difference in the supply of calcium, the leaf position, and the growth stage of the individual is reflected in the chemistry and shape of the calcium in the paddy rice leaf. Japanese Soc Soil Sci and Plant Nutrition. 1970;41:19–26.
  • Wu FB, Dong J, Qian QQ, et al. Cellular distribution and chemical form of Cd and Cd–Zn interaction in different barley genotypes. Chemosphere. 2005;60:1437–1446.
  • Wang X, Liu Y, Zeng G, et al. Cellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ Exp Bot. 2008;62:389–395.
  • Qiu Q, Wang Y, Yang Z, et al. Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food Chem Toxicol. 2011;49(9):2260–2267. doi: 10.1016/j.fct.2011.06.024
  • Huang RZ, Jian YB, Jia CH, et al. Cellular distribution and chemical forms of cadmium in Morus alba L. Int J phytoremedi. 2018;20(5):448–453.
  • Wu H, Li F, Mou H, et al. Analysis of heavy metal fractions in plants by two steps sequential extraction procedure. Environ Sci Technol. 2012;35(7):133–137.
  • Perronnet K, Schwartz C, Morel JL. Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil. Plant Soil. 2003;249(1):19–25. doi: 10.1023/A:1022560711597
  • Xue Y, Wang JQ, Huang J, et al. The response of duckweed (Lemna minor L.) roots to Cd and its chemical forms. J Chem. 2018;2018:1–9. doi: 10.1155/2018/7274020
  • Pan G, Yan WD, Zhang HP, et al. Cellular distribution and chemical forms involved in manganese accumulation and detoxification for Xanthium strumarium L. Chemosphere. 2019;237:124531.
  • Juneja S, Prakash S. The chemical form of trivalent chromium in xylem sap of maize (Zea mays L.). Chem Speciat Bioavailab. 2005;17(4):161–169. doi: 10.3184/095422906783438820
  • Weng B, Xie XY, Weiss DJ, Kandelia Obovata S. Yong tolerance mechanisms to cadmium: subcellular distribution, chemical forms and thiol pools. Mar Pollut Bull. 2012;64(11):2453–2460.
  • Ueno D, Iwashita T, Zhao FJ, et al. Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyper accumulator Arabidopsis halleri. Plant Cell Physiol. 2008;49(4):540–548. doi: 10.1093/pcp/pcn026
  • Zhou XY, Qiu RL, Ying RR, et al. Effects of zinc on subcellular distribution and chemical forms of cadmium in Potentilla griffithii var. Velutina. J Agro-Environ Sci. 2008;6(3):1066–1071.
  • Zeng P, Li X, Wang X, et al. Cadmium and lead mixtures are less toxic to the Chinese medicinal plant Ligusticum chuanxiong hort, than either metal alone. Ecotoxicol Environ Saf. 2020;193:110342.
  • Tao X, Xu Y, Wang L, et al. Effects of foliar zinc application on bioavailability and morphology of cadmium zinc in rape. J Agro-Environ Sci. 2022;41(4):735–745.
  • Zou J, Wang Y, Wang S, et al. Ca alleviated Cd-induced toxicity in Salix matsudana by affecting Cd absorption, translocation, subcellular distribution, and chemical forms. J Plant Physiol. 2023;281:153933. doi: 10.1016/j.jplph.2023.153926
  • Du JW, Zeng L, Zhang SL, et al. Complete recycling of valuable metals from electroplating sludge: green and selective recovery of chromium. Chem Eng J. 2003;467:143484.
  • Wang K, Tang SF, Hou X. Molecular mechanism investigation on the interactions of copper (II) ions with glutathione peroxidase 6 from Arabidopsis thaliana. Spectrochimica. Acta part A.: Mol. Biomole Spectrosc. 2018;203:428–433.
  • Morabito R. Extraction techniques in speciation analysis of environmental samples. Fresen J Anal Chem. 1995;351(4–5):378–385. doi: 10.1007/BF00322906
  • Yu H, Yang ZY, Yang ZJ, et al. Chemical forms and subcellular and molecular distribution of Cd in two Cd-accumulation rice genotypes. Chin J Appl Ecol. 2008;19(10):2221–2226.
  • Bian F, Zhong Z, Zhang X, et al. Bamboo - an untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere. 2020;246:125750.
  • Sajida M, Alhooshanib K. Dispersive liquid-liquid micro extraction based binary extraction techniques for chromatographic analysis: a review. Trends Analyt Chem. 2018;108:167–182.
  • Kersten M, Förstner U. Speciation of trace elements in sediments. In: Batley GE, editor. Trace Element Speciation: Analytical Methods and Problems. Boca Raton: CRC Press; 1989. p. 245–317.
  • Shojaei S, Jafarpour A, Shojaei S, et al. Heavy metal uptake by plants from waste water of different pulp concentrations and contaminated soils. J Cleaner Pro. 2021;296:126345.
  • Dong YX, Wang XF, Cui XM. Exogenous nitric oxide involved in subcellular distribution and chemical forms of Cu2+ under copper stress in tomato seedlings. J Integr Agric. 2013;12(10):1783–1790. doi: 10.1016/S2095-3119(13)60367-6
  • Yang H, Tang Q. Utilization of ultrasonic vibration extraction-ICP-MS for metal soil chemical speciation. Environ Monit Manage and Tech. 2015;27(4):51–53.
  • Gong Y, Xu J, Lu R. Studies on the content of different forms of calcium compound and their change in the fruits of pear. Acta Horticultural Sinica. 1992;19(2):129–134.
  • Li WQ, Qing T, Li CC, et al. Integration of subcellular partitioning and chemical forms to understand silver nanoparticles toxicity to lettuce (Lactuca sativa L.) under different exposure pathways. Chemosphere. 2020;258:258. doi: 10.1016/j.chemosphere.2020.127349
  • Montes-Bayón M, Molet MJD, González EB, et al. Evaluation of different sample extraction strategies for selenium determination in selenium-enriched plants (Allium sativum and Brassica juncea) and Se speciation by HPLC-ICP-MS. Talanta. 2006;68(4):1287–1293. doi: 10.1016/j.talanta.2005.07.040
  • Yin XQ, Wang CZ, Yi L, et al. Study on the relationship between Pb chemical forms and enzyme activity in Brassica chinensis. Agri Res Arid Areas. 2010;28(5):133–137.
  • Wang X, Liu YG, Zeng GM, et al. Cellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ Exp Bot. 2007;62(3):398–395.
  • Wang P, Deng XJ, Huang Y, et al. Comparison of subcellular distribution and chemical forms of cadmium among four soybean cultivars at young seedlings. Environ Sci Pollut Res Int. 2015;22(24):19584–19595. doi: 10.1007/s11356-015-5126-y
  • Zhang SJ, Hu F, Li HX. Effects of earthworm mucus and amino acids on cadmium subcellular distribution and chemical forms in tomato seedlings. Biores Technol. 2009;100(17):4041–4046. doi: 10.1016/j.biortech.2009.03.028
  • Lai HY, Cai MC. Effects of extended growth periods on subcellular distribution, chemical forms, and the translocation of cadmium in Impatiens walleriana. Int J Phytoremediation. 2016;18(3):228–234. doi: 10.1080/15226514.2015.1073677
  • Zhang CY, Liu DW, Shi KL, et al. Gadolinium accumulation, distribution, chemical forms, and influence on the growth of rice seedlings. Ecotoxicol Environ Saf. 2019;179:265–271. doi: 10.1016/j.ecoenv.2019.04.074
  • Wang X, Liu DW. Integration of cerium chemical forms and subcellular distribution to understand cerium tolerance mechanism in the rice seedlings. Environ Sci Pollut Res. 2017;24(19):16336–16343. doi: 10.1007/s11356-017-9274-0
  • Zheng SN, Zhang CY, Shi KL, et al. Bioaccumulation, subcellular distribution and chemical forms of yttrium in rice seedling. J Rare Earths. 2018;36(3):331–336. doi: 10.1016/j.jre.2017.09.006
  • Zhou XY, Qiu RL, Li QF, et al. Effects of zinc on the distribution and chemical forms of lead in potentilla griffithii var. Velutina. Acta Sci Circumstantiae. 2008;(10):2064–2071.
  • Wang WJ, Zhang MZ, Liu JN. Cellular distribution and chemical forms of Cd in Bougainvillea spectabilis Willd. As an ornamental phytostabilizer: an integrated consideration. Int J Phytoremediation. 2018;20(11):1087–1095.
  • Xiao L. Application of sequential injection technique coupled with spectrophotometer in element speciation analysis [dissertation]. Shengyang: Northeastern University; 2010.
  • Pan XY, Dong G, He X, et al. Effects of al stress on the growth and nitrogen uptake of maize varieties with different al tolerance as related with al chemical forms on root surfaces. J Soils Sedi. 2020;20:1–11.
  • Hou M, Huo Y, Yang XH, et al. Chemical form and subcellular distribution of vanadium in corn seedlings. Microchem J. 2020;153:104468. doi: 10.1016/j.microc.2019.104468
  • Liu Y, Wang CQ, Li B, et al. Effect of selenium-zinc interaction on the chemical forms of selenium of tea leaves in spring season. J Tea Sci. 2010;30(5):343–349.
  • Hou M, Gou Z, He JL. Accumulation and chemical forms of vanadium in different rice cultivars. J Agro-Environ Sci. 2013;32(9):1738–1744.
  • Fu XP, Dou CM, Chen YX. Cellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater. 2011;186(1):103–107.
  • Li B, Wang SE, You XS, et al. Effect of foliar spraying of gibberellins and brassinolide on cadmium accumulation in rice. Toxics. 2023;11(4):364. doi: 10.3390/toxics11040364
  • Li KT, Peng SY, Zhang B, et al. Exopolysaccharides from Lactobacillus plantarum reduces cadmium uptake and mitigates cadmium toxicity in rice seedlings.World. J Microb & Biotech. 2022;38(12):243.
  • Wang JB, Su LY, Yang JZ, et al. Comparisons of cadmium subcellular distribution and chemical forms between low-Cd and high-Cd accumulation genotypes of watercress (Nasturtium officinale L.). Plant Soil. 2015;396(1/2):325–337.
  • Niu H, Wang ZL, Song JN, et al. Cadmium subcellular distribution and chemical form in Festuca arundinacea in different intercropping systems during phytoremediation. Chemosphere. 2021;276:130137.
  • Zhu JJ, Zhao P, Nie ZJ, et al. Selenium supply alters the subcellular distribution and chemical forms of cadmium and the expression of transporter genes involved in cadmium uptake and translocation in winter wheat (Triticum aestivum). BMC Plant Biol. 2020;20(1):550. doi: 10.1186/s12870-020-02763-z
  • Wang JC, Chen XF, Chu SH, et al. Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum. Environ Sci Pollut Res. 2020;28(11):13955–13969.
  • Li ZW, Lin WJ. Synergetic effects of DA-6/24-EBL and NTA on uptake, subcellular distribution and chemical form of Cd in Amaranthus hybridus L. Soil Sci Plant Nutr. 2020;66(4):653–661. doi: 10.1080/00380768.2020.1786721
  • Li GX, Li QS, Wang L, et al. Cadmium tolerance and detoxification in Myriophyllum aquaticum: physiological responses, chemical forms, and subcellular distribution. Environ Sci Pollut Res Int. 2020;27(30):1–12.
  • Feng DY, Huang CR, Xu WH, et al. Difference of cadmium bioaccumulation and transportation in two rye grass varieties and the correlation between plant cadmium concentration and soil cadmium chemical forms. Wireless Pers Commun. 2020;110(1):291–307. doi: 10.1007/s11277-019-06727-x
  • Lam CM, Chen KS, Lai HY. Chemical forms and health risk of cadmium in water spinach grown in contaminated soil with an increased level of phosphorus. Int J Environ Res Public Health. 2019;16(18):3322.
  • Peng Q, Li T, Xu WH, Jiao LC, Deng JB. Differences in the cadmium-enrichment capacity and cellular distribution and chemical form of cadmium in different varieties of pepper. Environ Sci. 2019;40(7):3347–3354.
  • Zhang XF, Hu ZH, Yan TX, et al. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. Ecotoxicol Environ Saf. 2019;171:352–360. doi: 10.1016/j.ecoenv.2018.12.097
  • Xu GP, Deng CB, Wang J, et al. Lead bioaccumulation, subcellular distribution and chemical form in sugarcane and its potential for phytoremediation of lead-contaminated soil. Hum Ecol Risk Assess: Int J. 2020;26(5):1175–1187. doi: 10.1080/10807039.2018.1543016
  • Li G, Li Q, Wang L, et al. Effects of variable sulfur supply on the accumulation, subcellular distribution, and chemical forms of cadmium in Hydrilla verticillata. Polish J Environ Stud. 2018;28(3):1255–1265.
  • Yang LP, Zeng J, Wang P, et al. Sodium hydrosulfide alleviates cadmium toxicity by changing cadmium chemical forms and increasing the activities of antioxidant enzymes in salix. Environ Exp Bot. 2018;156:161–169. doi: 10.1016/j.envexpbot.2018.08.026
  • Xin JP, Zhang Y, Tian RN. Tolerance mechanism of Triarrhena sacchariflora (Maxim.) Nakai. Seedlings to lead and cadmium: translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure. Ecotoxicol Environ Saf. 2018;165:611–621. doi: 10.1016/j.ecoenv.2018.09.022
  • Yang LP, Zhu J, Wang P, et al. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicol Environ Saf. 2018;100(160):10–18.
  • Guan MY, Zhang HH, Pan W, et al. Sulfide alleviates cadmium toxicity in Arabidopsis plants by altering the chemical form and the subcellular distribution of cadmium. Sci Total Environ. 2018;627:663–670. doi: 10.1016/j.scitotenv.2018.01.245
  • Xie H, Liao ZS, Li J, et al. Effects of exogenous calcium on cadmium accumulation in amaranth. Chemosphere. 2023;326:138435. doi: 10.1016/j.chemosphere.2023.138435
  • Xiao QQ, Wang S, Chi YH. Accumulation and chemical forms of cadmium in tissues of different vegetable crops. Agronomy-Basel. 2023;13(3):680. doi: 10.3390/agronomy13030680
  • Huang WL, Niu YT, Li Y, et al. Effects of free amino acids, Metallothionein, and chemical forms of heavy metals on the accumulation and detoxification of cadmium and chromium in Chinese Goldthread (Coptis chinensis Franch). J Sensor. 2022;2022:8070016 .
  • Sari SHJ, Chien MF, Inoue C. Subcellular localization and chemical speciation of Cd in Arabidopsis halleri ssp. gemmifera to reveal its hyperaccumulating and detoxification strategies. Environ Exp Bot. 2022;203:105047. doi: 10.1016/j.envexpbot.2022.105047
  • Gu SG, Zhang W, Wang F, et al. Particle size of biochar significantly regulates the chemical speciation, transformation, and ecotoxicity of cadmium in biochar. Environ Pollut. 2023;320:121100. doi: 10.1016/j.envpol.2023.121100
  • Jiang Y, Han JH, Xue WX, et al. Over expression of SmZIP plays important roles in Cd accumulation and translocation, subcellular distribution, and chemical forms in transgenic tobacco under Cd stress. Ecotoxicol Environ Saf. 2021;214:112097–112097. doi: 10.1016/j.ecoenv.2021.112097
  • Zhu M, Jiang S, Fu G, et al. Morphology of heavy metals in process of pyrolysis of rape stalk. J Cent South Univ (Sci And Tech). 2019;50(9):1672–7207.
  • Li CC, Dang F, Cang L, et al. Integration of metal chemical forms and subcellular partitioning to understand metal toxicity in two lettuce (Lactuca sativa L.) cultivars. Plant Soil. 2014;384(1–2):201–212. doi: 10.1007/s11104-014-2194-6
  • Yang J, Zha Y, Liu H. Distribution and chemical forms of Cd, Cu and Pb in polluted seeds. China Environ Sci. 1999;6:500–504.
  • Liu Y, Li ZY, Xu RK. Distribution of manganese (II) chemical forms on soybean roots and manganese (II) toxicity. PEDOSPHERE. 2019;29(5):656–664. doi: 10.1016/S1002-0160(17)60413-2
  • Cheng HK, Zhang B, Jing, XX, Yang SQ, Zhao P, Sun XX, Zhou ZY. Response of maize to lead stress and chemical forms of lead. Environ Sci. 2015;36(4):1468–1473.
  • Sun XB, Li YC, Wang N. Comparisons on active chemical forms and distribution of lead in wheat and corn. J Agro-Environ Sci. 2005;24(4) :666–669.
  • Chen YH, Zhang FY, Wu XF, et al. Effects of different modifier concentrations on lead-zinc tolerance, subcellular distribution and chemical forms for four kinds of woody plants. Environ Sci. 2015;36(10):3852–3859.
  • Zhou XY, Qiu RL, Hu PJ, et al. Effects of cadmium and lead on subcellular distribution and chemical forms of zinc in Potentilla griffithii var. Velutina. Environ Sci. 2008;29(7):2028–2036.
  • Xu J, Yu MG, Chen YX, et al. Characteristics of distribution and chemical forms of Pb in tea plant varieties. Chin J Appl Ecol. 2011;22(4):891–896.
  • Cheng YR, Wang C, Chai SY, et al. Ammonium N influences the uptakes, translocations, subcellular distributions and chemical forms of Cd and Zn to mediate the Cd/Zn interactions in dwarf polish wheat (Triticum polonicum L.) seedlings. Chemosphere. 2018;193:1164–1171. doi: 10.1016/j.chemosphere.2017.11.058
  • Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R. Metal and metalloid toxicity in plants: an overview on molecular aspects. Plants. 2021;10(4):635. doi: 10.3390/plants10040635
  • Bian WL, Yan JP, Cui L, et al. The effect of selenium on cadmium accumulation,chemical forms and the resistance of peanuts. J Agro-Environ Sci. 2018;37(6):1094–1101.
  • Peijnenburg WJGM, Zablotskaja M, Vijver MG. Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicol Environ Saf. 2007;67(2):163–179. doi: 10.1016/j.ecoenv.2007.02.008
  • Huang RZ, Jiang YB, Jia CH, et al. Cellular distribution and chemical forms of cadmium in Morus alba L. Int J Phytoremediation. 2018;20(5):448–453.
  • Xin J, Zhao XH, Tan QL, et al. Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.). Ecotoxicol Environ Saf. 2017;145:258–265. doi: 10.1016/j.ecoenv.2017.07.042
  • Zeng F. Physiological and molecular mechanism of chromium toxicity and tolerance in rice [dissertation]. Hangzhou: Zhejiang University; 2010.
  • Zhu GX, Xiao HY, Guo QJ, et al. Cellular distribution and chemical forms of heavy metals in three types of compositae plants from lead-zinc tailings area. Environ Sci. 2017;38(7):3054–3060.
  • Mwamba TM, Li L, Gill RA, et al. Differential subcellular distribution and chemical forms of cadmium and copper in Brassica napus. Ecotoxicol Environ Saf. 2016;134(Pt 1):239–249. doi: 10.1016/j.ecoenv.2016.08.021
  • Zhou Q, Liu ZD, Liu Y, et al. Relative abundance of chemical forms of Cu(II) and Cd(II) on soy bean roots as influenced by pH, cations and organic acids. Sci Rep. 2016;6(1):513–524. doi: 10.1038/srep36373
  • You SH, Teng Y, Ma LL, et al. Characteristics of Cd uptake and chemical forms in Typhaan gustifolia. Environ Eng. 2016;34(8):58–61.
  • Zhan FD, He YM, Li Y, et al. Cellular distribution and chemical forms of cadmium in a dark septate endophyte (DSE. Exophiala Pisciphila Environ Sci And Pollut Res. 2015;22(22):17897–17905.
  • Wali M, Fourati E, Hmaeid N, et al. NaCl alleviates Cd toxicity by changing its chemical forms of accumulation in the halophyte Sesuviumbportulacastrum. Environ Sci Pollut Res Int. 2015;22(14):10769–10777. doi: 10.1007/s11356-015-4298-9
  • Fu HB, Zeng Y, Chen JA, et al. Content and chemical forms distribution of Cd in farmland soil and potato in zinc smelting area. J Henan Agri Sci. 2014;43(9):66–71.
  • Liu J, Zhou K, Xu WH, et al. Effect of exogenous iron on accumulation and chemical forms of cadmium, and physiological characterization in different varieties of tomato. Environ Sci. 2013;34(10):4126–4131.
  • Yu H, Zhang Z, Zhang Y, et al. Metal type and aggregate micro-environment govern the response sequence of speciation transformation of different heavy metals to micro plastics in soil. Sci Total Environ. 2021;752:141956.
  • Zhang CL, Zhang P, Mo CG, et al. Cadmium uptake, chemical forms, subcellular distribution, and accumulation in Echinodorus osiris Rataj. Environ Sci Processes Impacts. 2013;15(7):1459–1465. doi: 10.1039/c3em00002h
  • Lu ZY, Liu ZQ, Song ZG, et al. Subcellular distribution and chemical forms of Cd and the synthesis of phytochelatins(PCs)in different barley genotypes. J Agro-Environ Sci. 2013;32(11):2125–2131.
  • Ma P, Zang J, Shao T, et al. Cadmium distribution and transformation in leaf cells involved in detoxification and tolerance in barley. Ecotoxicol Environ Saf. 2023;249:114391. doi: 10.1016/j.ecoenv.2022.114391
  • Bai X, Chen YH, Geng K, et al. Accumulation,subcellular distribution and chemical forms of cadmium in Viola Tricolor L. Acta Scientiae Circumstantiae. 2014;34(6):1600–1605.
  • Gujre N, Mitra S, Soni A, et al. Speciation, contamination, ecological and human health risks assessment of heavy metals in soils dumped with municipal solid wastes. Chemosphere. 2021;262:262. doi: 10.1016/j.chemosphere.2020.128013
  • Xu PX, Wang ZL. Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue: chemical forms and tissue distribution. Environ Exp Bot. 2013;96:35–42. doi: 10.1016/j.envexpbot.2013.09.001
  • Tang X, Li C, Yin J, et al. Analysis of the existing forms of calcium and aluminium in vegetables. Trace Elements And Health Res. 2001;18(4) :49–50.
  • Nuza’iti A, Ayinul A, Dilinur M. Effects of phosphorus on chemical forms and physiological properties of Cd in Fragaia ananassa D. Chin J Soil Sci. 2013;44(6):1460–1464.
  • Wang YP, Huang J, Gao YZ, et al. Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. And resists cadmium toxicity. PLoS One. 2012;7(11):e48669. doi: 10.1371/journal.pone.0048669
  • Du YP, Li HJ, Yin KL, et al. Cadmium accumulation, subcellular distribution and chemical forms Vitis Vinifera Cv. Chardonnay Grapevine. Chin J Appl Ecol. 2012;23(6):1607–1612.
  • Qiu Q, Wang YT, Yang ZY, et al. Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food Chem Toxicol. 2011;49(9):2260–2267. doi: 10.1016/j.fct.2011.06.024
  • Zheng MM, Feng D, Liu HJ, et al. Subcellular distribution, chemical forms of cadmium and rhizosphere microbial community in the process of cadmium hyperaccumulation in duckweed. Sci Total Environ. 2023;859:160389. doi: 10.1016/j.scitotenv.2022.160389
  • He SY, Wu QL, He ZL. Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne. Chemosphere. 2013;93(11):2782–2788. doi: 10.1016/j.chemosphere.2013.09.037
  • Hu L, McBride MB, Cheng H, et al. Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes. Environ Res. 2001;111:356–361.
  • Zhang YQ, Tai CF, Li PJ, et al. Effect of plant growth inhibitors on accumulation and chemical form of Cd in Tagetes erecta L. J Agro-Environ Sci. 2010;29(2):258–263.
  • Yang WD, Chen YT, Qu MH. Subcellular distribution and chemical forms of cadmium in Salix officinalis. Acta Bot Boreal Occident Sin. 2009;29(7):1394–1399.
  • Schreck E, Foucault Y, Sarret G, et al. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci Total Environ. 2012;427-428:253–262. doi: 10.1016/j.scitotenv.2012.03.051
  • Li HH, Yang XE. Effects of sulfur on accumulation subcellular distribution and chemical forms of cadmium in hyperaccumulator Sedum alfredii Hance. Plant Nutrit And Fertilizer Sci. 2009;15(2):395–402.
  • Qin JQ, Xia BC, Zhao P, et al. Subcellular distribution and chemical forms of cadmium in two Miscanthus floridulus populations. Ecol Environ Sci. 2009;18(3):817–823.
  • Tang CF, Zhang RQ, Wen SZ, et al. Effects of exogenous spermidine on subcellular distribution and chemical forms of cadmium in Typha latifolia L. under cadmium stress. Water Sci Technol. 2009;59(8):1487–1493. doi: 10.2166/wst.2009.170
  • Zhao YF, Shang DR, Ning JS, et al. Cellular distribution and chemical forms of lead in the red algae, Porphyra yezoensis. Chemosphere. 2019;227:172–178.
  • Liu SX, Huang YZ, Luo ZJ, et al. Effect of exogenous melatonin on accumulation and chemical form of Cd in rice. Chin J Appl Ecol. 2017;28(5):1588–1594.
  • Zhang X, Liu J, Xu W, et al. Effects of phosphorus on cadmium accumulation, chemical form and physiological characteristics of different pepper cultivars. Environ Sci. 2011;32(4):1171–1176.
  • Zhou JM, Dang Z, Chen NC, et al. Influence of NTA on accumulation and chemical form of copper and zinc in maize. J Agro-Environ Sci. 2007;26(2):453–457.
  • Zeng FR, Ali S, Qiu BY, et al. Effects of chromium stress on the subcellular distribution and chemical form of Ca, Mg, Fe, and Zn in two rice genotypes. J Plant Nutr Soil Sci. 2010;173(1):135–148. doi: 10.1002/jpln.200900134
  • Hu R, Sun K, Su X, et al. Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerina Bunge and Chenopodium album L. J Hazard Mater. 2012;205-206:131–138. doi: 10.1016/j.jhazmat.2011.12.051
  • Liu XW, Qi CM, Li Y, et al. Subcellular distribution and chemical forms of lead in Eupatorium adenophorum at different lead levels. Guihaia. 2016;36(3):335–341.
  • Gong YC, Xu J, Lv RJ. Study on the content and different forms of calcium compound and their change in the fruit of pear. Acta Horticultural Sinica. 1992;19(2):129–134.
  • Kramer U, Pickering IJ, Prince RC, et al. Cellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol. 2000;122(4):1343–1353.
  • Schaumloffel D, Ouerdane L, Bouyssiere B, et al. Speciation analysis of nickel in the latex of a hyperaccumulating tree Sebertia acuminata by HPLC and CZE with ICP-MS and electrospray MS-MS detection. J Anal Spectrum. 2003;18(2):120–127.
  • Erdemir US, Gucer S. Assessment of copper bioavailability in spinach (Spinacia oleracea L) leaves by chemical fractionation. Food Anal Methods. 2014;7(5):994–1001. doi: 10.1007/s12161-013-9704-7
  • Kelly R, Andrews J, DeWitt J. An X-ray absorption spectroscopic investigation of the nature of the zinc complex accumulated in Datura innoxia plant tissue culture. Microchem J. 2002;71(2–3):231–245. doi: 10.1016/S0026-265X(02)00015-2
  • Wu J, Yang D, Wang L, et al. Research progress on the analysis of the occurrence and distribution characteristics of heavy metals in plants. China Environ Monit. 2018;34(4):141–149.
  • Mogwasi R, Zor S, Kariuki DK, et al. Sequential extraction as novel approach to compare 12 medicinal plants from Kenya regarding their potential to release chromium, manganese, copper, and zinc. Biol Trace Elem Res. 2018;182(2):407–422. doi: 10.1007/s12011-017-1083-2
  • Majolagbe AO, Kuteyi V, Onwordi CT, et al. Concentration and bioavailability of iron in some selected blood building medicinal plants in Southwest Nigeria. J Environ. 2013;2:19–24.
  • Chen S, Zhang GQ, Liang X, et al. A Dark septate endophyte Improves cadmium tolerance of maize by Modifying Root morphology and Promoting cadmium binding to the cell Wall and phosphate. J Fungi. 2023;9(5):531. doi: 10.3390/jof9050531
  • Chen X, Yang S, Ma J, et al. Manganese and copper additions differently reduced cadmium uptake and accumulation in dwarf polish wheat (Triticum polonicum L.). J Hazard Mater. 2023;448:130998. doi: 10.1016/j.jhazmat.2023.130998
  • Yao Q, Li WP, Liu Y, et al. FeCl3 and Fe-2(SO4)(3) differentially reduce Cd uptake and accumulation in polish wheat (Triticum polonicum L.) seedlings by exporting Cd from roots and limiting Cd binding in the root cell walls. Environ Pollut. 2023;317:120762.
  • Wei Y. Study on the relationship between rare earth elements and phosphate in nutrient solution. J Chin Rare Earth Soc. 2002;19(1):91–93.
  • Wang XL, Zhang BJ, Wu DS, et al. Chemical forms governing Cd tolerance and detoxification in duckweed (Landoltia punctata). Ecotoxicol Environ Saf. 2021;207:111553. doi: 10.1016/j.ecoenv.2020.111553
  • Sha S, Cheng MH, Hu KJ, et al. Toxic effects of Pb on Spirodela polyrhiza L.: Cellular distribution, chemical forms, morphological and physiological disorders. Ecotoxicol Environ Saf. 2019;181:146–154.
  • Huang L, Zhang HQ, Song YY, et al. Cellular compartmentalization and chemical forms of lead participate in lead tolerance of Robinia pseudoacacia L. with Funneliformis mosseae. Front Plant Sci. 2017;8:517.
  • Zhao L, Li TX, Yu HY, et al. Changes in chemical forms, subcellular distribution, and thiol compounds involved in Pb accumulation and detoxification in Athyrium wardii (Hook.). Environ Sci Pollut Res. 2015;22(16):12676–12688. doi: 10.1007/s11356-015-4464-0
  • Zu YQ, Li Y, Min H, et al. Cellular distribution and chemical form of Pb in hyperaccumulator Arenaria orbiculata and response of root exudates to Pb addition. Front Environ Sci Eng. 2015;9(2):250–258.
  • Zhou FR, Wang JX, Zhang Q, et al. Chemical forms and distribution of lead in the leaves of Platycladus orientalis and Sophora japonica. J Agro-Environ Sci. 2012;31(11):2121–2127.
  • Wang QY, Liu JS, Hu B. Integration of copper subcellular distribution and chemical forms to understand copper toxicity in apple trees. Environ Exp Bot. 2016;123:125–131. doi: 10.1016/j.envexpbot.2015.11.014
  • Peng B, Huang XP, Zhang DW. Chemical forms and accumulation patterns of Cu in two sea grass species Thalassia hemprichii and Enhalus acoroides. Chin J Ecol. 2010;29(10):1993–1997.
  • Liao B, Deng DM, Yang B, et al. Subcellular distribution and chemical forms of Cu in Commelina communis. Acta Sci Natural Univ Suny. 2004;43(2):72–75,80.
  • Zhou SB, Xu LS, Wu LH, et al. Subcellular distribution and chemical forms of Cd and Zn in Sedum jinianum. Chin J Appl Ecol. 2008;11:2515–2520.
  • Wu Q, Du SJ, Zeng XW, et al. Subcellular distribution and chemical forms of Potentilla grifithii hook. Ecolo And Environ. 2006;15(1):40–44.
  • Zhang N, Wang W, Li Y. Morphological distribution of Pb in the reclaimed water-soil-vegetable System. Environ Prot Sci. 2015;41(6):38–43.
  • Hu JZ, Zheng AZ, Pei DL, et al. Bioaccumulation and chemical forms of cadmium, copper and lead in aquatic plants. Braz Arch Biol Technol. 2010;53(1):235–240. doi: 10.1590/S1516-89132010000100029
  • Tatsuya H, Yasushi S, Takefumi O, et al. Chemical forms and levels of calcium in turnip leaves in relation to harvest time and growing temperature. J Japanese Soci Hortic Sci. 2003;72(2):169–174.
  • Xiao ZH, Pan G, Li XH, et al. Effects of exogenous manganese on its plant growth, subcellular distribution, chemical forms, physiological and biochemical traits in Cleome viscosa L. Ecotoxicol Environ Saf. 2020;198:110696. doi: 10.1016/j.ecoenv.2020.110696
  • Pan G, Zhang HP, Liu WS, et al. Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding manganese tolerance in the herb Macleaya cordata (Papaveraceae). Ecotoxicol Environ Saf. 2019;181:455–462. doi: 10.1016/j.ecoenv.2019.06.040
  • He W, Chen YH, Liang X, et al. Screening for tolerant woody plants for improved manganese slag and research on sub-cellular distribution and chemical form of manganese. Environ Eng. 2018;36(9):154–160.
  • Li G, Wang Y, Zhang S, et al. Investigation on entrance mechanism of calcium and magnesium into micro-arc oxidation coatings developed on Ti-6Al-4V alloys. Surf Coat Technol. 2019;378:124951. doi: 10.1016/j.surfcoat.2019.124951
  • Zhao B, Zheng K, Liu CG. Bio-dissolution process and mechanism of copper phosphate hybrid nanoflowers by Pseudomonas aeruginosa and its bacteria-toxicity in life cycle. J Hazard Mater. 2021;419:126494. doi: 10.1016/j.jhazmat.2021.126494
  • Abraham T, Priyanka RN, Joseph S, et al. Fabrication of zirconium ferrite doped Ag3PO4 composite for the degradation of refractory pollutants: visible light assisted Z-scheme insight. Mater Sci Semicond Process. 2021;130:105797. doi: 10.1016/j.mssp.2021.105797
  • McGowen SL, Basta NT, Brown GO. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J Environ Qual. 2001;30:493–500.
  • Cao X, Wang WB, Ma R, et al. Solidification/Stabilization of Pb2+ and Zn2+ in the sludge incineration residue-based magnesium potassium phosphate cement: Physical and chemical mechanisms and competition between coexisting ions. Environ Pollut. 2019;253:171–180. doi: 10.1016/j.envpol.2019.07.017
  • Ziya SC, Scott AW, Christopher HG. The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150 8°C. Chem Geol. 2005;217:147–169.
  • Wang Y, Chai LY, Yang ZH, et al. Cellular distribution and chemical forms of antimony in Ficus tikoua. Int J Phytoremediation. 2017;19(2):97–103.
  • Wang WS, Meng M, Li L. Arsenic detoxification in Eucalyptus: subcellular distribution, chemical forms, and sulfhydryl substances. Environ Sci Pollut Res Int. 2019;26(24):24372–24379. doi: 10.1007/s11356-019-05701-1
  • Zhang XH, Liu J, Wang DQ, et al. Bioaccumulation and chemical form of chromium in Leersia hexandra Swartz. Bull Environ Contam Toxicol. 2009;82(3):358–362.
  • Brzezicha-Cirocka J, Grembecka M, Szefer P. Monitoring of essential and heavy metals in green tea from different geographical origins. Environ Monit Assess. 2016;188(3):183. doi: 10.1007/s10661-016-5157-y