441
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Noncondensed aromatic carbon of sludge-derived biochar predominated peroxydisulfate activation mechanism for tetracycline degradation via an electron transfer pathway

, , &
Article: 2267755 | Received 14 Sep 2023, Accepted 02 Oct 2023, Published online: 17 Oct 2023

References

  • Ao X, Sun W, Li S, et al. Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: influencing factors, degradation pathways, and toxicity evaluation. J Chem Eng. 2019;361:1053–537. doi: 10.1016/j.cej.2018.12.133
  • Xin S, Huo S, Zhang C, et al. Coupling nitrogen/oxygen self-doped biomass porous carbon cathode catalyst with CuFeO2/biochar particle catalyst for the heterogeneous visible-light driven photo-electro-fenton degradation of tetracycline, Appl. Catal , B: Environ. 2022;305:121024. doi: 10.1016/j.apcatb.2021.121024
  • Yang K, Yue Q, Kong J, et al. Microbial diversity in combined UAF–UBAF system with novel sludge and coal cinder ceramic fillers for tetracycline wastewater treatment. J Chem Eng. 2016;285:319–330. doi: 10.1016/j.cej.2015.10.019
  • Huang X, Zhu N, Mao F, et al. Enhanced heterogeneous photo-fenton catalytic degradation of tetracycline over yCeO2/Fh composites: performance, degradation pathways, Fe2+ regeneration and mechanism. J Chem Eng. 2020;392:123636. doi: 10.1016/j.cej.2019.123636
  • Bao X, Wu Q, Shi W, et al. Polyamidoamine dendrimer grafted forward osmosis membrane with superior ammonia selectivity and robust antifouling capacity for domestic wastewater concentration. Water Res. 2019;153:1–10. doi: 10.1016/j.watres.2018.12.067
  • Zhang Y, Cui W, An W, et al. Combination of photoelectrocatalysis and adsorption for removal of bisphenol a over TiO2-graphene hydrogel with 3D network structure, Appl. Catal , B: Environ. 2018;221:36–46. doi: 10.1016/j.apcatb.2017.08.076
  • Zhang R, Zheng X, Zhang D, et al. Insight into the roles of endogenous minerals in the activation of persulfate by graphitized biochar for tetracycline removal. Sci Total Environ. 2021;768:144281. doi: 10.1016/j.scitotenv.2020.144281
  • Chen M, He Y, Gu Z. Microwave irradiation activated persulfate and hydrogen peroxide for the treatment of mature landfill leachate effluent from a membrane bioreactor, Sep. Purif Technol. 2020;250:117111. doi: 10.1016/j.seppur.2020.117111
  • Ribeiro AR, Nunes OC, Pereira MF, et al. Silva, an overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environ Int. 2015;75:33–51. doi: 10.1016/j.envint.2014.10.027
  • Zhu L, Ai Z, Ho W, et al. Core–shell Fe–Fe2O3 nanostructures as effective persulfate activator for degradation of methyl orange, Sep. Purif Technol. 2013;108:159–165. doi: 10.1016/j.seppur.2013.02.016
  • Mousset E, Loh WH, Lim WS, et al. Cost comparison of advanced oxidation processes for wastewater treatment using accumulated oxygen-equivalent criteria. Water Res. 2021;200:117234. doi: 10.1016/j.watres.2021.117234
  • Song B, Zeng Z, Almatrafi E, et al. Pyrite-mediated advanced oxidation processes: applications, mechanisms, and enhancing strategies. Water Res. 2022;211:118048. doi: 10.1016/j.watres.2022.118048
  • Tian K, Hu L, Li L, et al. Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment, Chin. Chem Lett. 2022;33(10):4461–4477. doi: 10.1016/j.cclet.2021.12.042
  • Chu G, Zhao J, Liu Y, et al. The relative importance of different carbon structures in biochars to carbamazepine and bisphenol asorption. J Hazard Mater. 2019;373:106–114. doi: 10.1016/j.jhazmat.2019.03.078
  • Ho SH, Chen YD, Li R, et al. N-doped graphitic biochars from C-phycocyanin extracted spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation. Water Res. 2019;159:77–86. doi: 10.1016/j.watres.2019.05.008
  • Li A, Wu Z, Wang T, et al. Kinetics and mechanisms of the degradation of PPCPs by zero-valent iron (Fe°) activated peroxydisulfate (PDS) system in groundwater. J Hazard Mater. 2018;357:207–216. doi: 10.1016/j.jhazmat.2018.06.008
  • Qu S, Yuan Y, Yang X, et al. Carbon defects in biochar facilitated nitrogen doping: the significant role of pyridinic nitrogen in peroxymonosulfate activation and ciprofloxacin degradation. J Chem Eng. 2022;441:135864. doi: 10.1016/j.cej.2022.135864
  • Cui P, Liu C, Su X, et al. Atomically dispersed manganese on biochar derived from a hyperaccumulator for photocatalysis in organic pollution remediation. Environ Sci Technol. 2022;56(12):8034–8042. doi: 10.1021/acs.est.2c00992
  • Yuan Y, Zhang C, Zhao C, et al. One-step preparation of a novel graphitic biochar/Cu-0/Fe3O4 composite using CO2-ambiance pyrolysis to activate peroxydisulfate for dye. J Environ Sci. 2023;125:26–36. doi: 10.1016/j.jes.2021.10.030
  • Wang Z, Shen R, Ji S, et al. Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of pb, Cu, and zn in sandy loam soil. J Hazard Mater. 2021;419:126468. doi: 10.1016/j.jhazmat.2021.126468
  • Xiao P, Yi X, Wu M, et al. Catalytic performance and periodate activation mechanism of anaerobic sewage sludge-derived biochar. J Hazard Mater. 2022;424:127692. doi: 10.1016/j.jhazmat.2021.127692
  • Han L, Ro KS, Sun K, et al. New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environ Sci Technol. 2016;50(24):13274–13282. doi: 10.1021/acs.est.6b02401
  • Zhang J, Xin B, Shan C, et al. Roles of oxygen-containing functional groups of O-doped g-C3N4 in catalytic ozonation: quantitative relationship and first-principles investigation, Appl. Catal , B: Environ. 2021;292:120155. doi: 10.1016/j.apcatb.2021.120155
  • Jing F, Liu Y, Chen J. Insights into effects of ageing processes on Cd-adsorbed biochar stability and subsequent sorption performance. Environ Pollut. 2021;291:118243. doi: 10.1016/j.envpol.2021.118243
  • Baek J, Shin HS, Chung DC, et al. Studies on the correlation between nanostructure and pore development of polymeric precursor-based activated hard carbons: II. transmission electron microscopy and raman spectroscopy studies. J Ind Eng Chem. 2017;54:324–331. doi: 10.1016/j.jiec.2017.06.007
  • Smith MW, Dallmeyer I, Johnson TJ, et al. Structural analysis of char by raman spectroscopy: improving band assignments through computational calculations from first principles. Carbon. 2016;100:678–692. doi: 10.1016/j.carbon.2016.01.031
  • Li J, Liang N, Jin X, et al. The role of ash content on bisphenol asorption to biochars derived from different agricultural wastes. Chemosphere. 2017;171:66–73. doi: 10.1016/j.chemosphere.2016.12.041
  • Li S, Barreto V, Li R, et al. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. J Anal Appl Pyrolysis. 2018;133:136–146. doi: 10.1016/j.jaap.2018.04.010
  • Wei X, Gao N, Li C, et al. Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water. J Chem Eng. 2016;285:660–670. doi: 10.1016/j.cej.2015.08.120
  • Anipsitakis GP, Dionysiou DD. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol. 2003;37:4790–4797. doi: 10.1021/es0263792
  • Lee J, von Gunten U, Kim JH. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ Sci Technol. 2020;54:3064–3081. doi: 10.1021/acs.est.9b07082
  • Wang S, Wang J. Nitrogen doping sludge-derived biochar to activate peroxymonosulfate for degradation of sulfamethoxazole: modulation of degradation mechanism by calcination temperature. J Hazard Mater. 2021;418:126309. doi: 10.1016/j.jhazmat.2021.126309
  • Huang KZ, Zhang H. Direct electron-transfer-based peroxymonosulfate activation by iron-doped manganese oxide (δ-MnO2) and the development of galvanic oxidation processes (GOPs. Environ Sci Technol. 2019;53:12610–12620. doi: 10.1021/acs.est.9b03648
  • Dou J, Cheng J, Lu Z, et al. Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process, Appl. Catal , B: Environ. 2022;301:120832. doi: 10.1016/j.apcatb.2021.120832
  • Wang H, Guo W, Liu B, et al. Sludge-derived biochar as efficient persulfate activators: sulfurization-induced electronic structure modulation and disparate nonradical mechanisms, Appl. Catal , B: Environ. 2020;279:119361. doi: 10.1016/j.apcatb.2020.119361
  • Cheng X, Guo H, Zhang Y, et al. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res. 2017;113:80–88. doi: 10.1016/j.watres.2017.02.016
  • Yin R, Guo W, Wang H, et al. Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism. J Chem Eng. 2019;357:589–599. doi: 10.1016/j.cej.2018.09.184
  • Xu Y, Lin H, Li Y, et al. The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis. Sci Total Environ. 2017;609:644–654. doi: 10.1016/j.scitotenv.2017.07.151