571
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Effect of different biochar additions on the change of carbon nitrogen content and bacterial community in meadow soils

, , , , &
Article: 2268272 | Received 16 Aug 2023, Accepted 03 Oct 2023, Published online: 16 Oct 2023

References

  • Yan Y, Wang C, Zhang J, et al. Response of soil microbial biomass C, N, and P and microbial quotient to agriculture and agricultural abandonment in a meadow steppe of northeast China. Soil Tillage Res. 2022;223:223. doi: 10.1016/j.still.2022.105475
  • Luo C, Yang J, Chen W, et al. Effect of biochar on soil properties on the Loess Plateau: results from field experiments. Geoderma. 2020;369:369. doi: 10.1016/j.geoderma.2020.114323
  • Shi G, Wu Y, Li T, et al. Mid- and long-term effects of biochar on soil improvement and soil erosion control of sloping farmland in a black soil region, China. J Environ Manage. 2022;320:115902. doi: 10.1016/j.jenvman.2022.115902
  • Wei Z, Wang JJ, Hernandez AB, et al. Effect of biochar amendment on sorption-desorption and dissipation of 17α‑ethinylestradiol in sandy loam and clay soils. Sci Total Environ. 2019;686:959–519. doi: 10.1016/j.scitotenv.2019.06.050
  • Xiao Z, Rasmann S, Yue L, et al. The effect of biochar amendment on N-cycling genes in soils: a meta-analysis. Sci Total Environ. 2019;696:133984. doi: 10.1016/j.scitotenv.2019.133984
  • Zhang L, Jing Y, Xiang Y, et al. Responses of soil microbial community structure changes and activities to biochar addition: a meta-analysis. Sci Total Environ. 2018;643:926–935. doi: 10.1016/j.scitotenv.2018.06.231
  • Chen W, Meng J, Han X, et al. Past, present, and future of biochar. Biochar. 2019;1(1):75–87. doi: 10.1007/s42773-019-00008-3
  • Jeffery S, Verheijen FGA, van der Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ. 2011;144(1):175–187. doi: 10.1016/j.agee.2011.08.015
  • Biederman LA, Harpole WS. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy. 2013;5(2):202–214. doi: 10.1111/gcbb.12037
  • Zhang L, Wu Z, Zhou J, et al. Meta-analysis of the Response of the productivity of different crops to parameters and processes in soil nitrogen cycle under biochar addition. Agronomy. 2022;12(8):1857. doi: 10.3390/agronomy12081857
  • Yang Y, Sun K, Liu J, et al. Changes in soil properties and CO2 emissions after biochar addition: role of pyrolysis temperature and aging. Sci Total Environ. 2022;839:839. doi: 10.1016/j.scitotenv.2022.156333
  • Ling L, Luo Y, Jiang B, et al. Biochar induces mineralization of soil recalcitrant components by activation of biochar responsive bacteria groups. Soil Biol Biochem. 2022;172:172. doi: 10.1016/j.soilbio.2022.108778
  • Palansooriya KN, Wong JTF, Hashimoto Y, et al. Response of microbial communities to biochar-amended soils: a critical review. Biochar. 2019;1(1):3–22. doi: 10.1007/s42773-019-00009-2
  • Li Y, Zhou C, Qiu Y, et al. Effects of biochar and litter on carbon and nitrogen mineralization and soil microbial community structure in a China fir plantation. J For Res. 2018;30(5):1913–1923. doi: 10.1007/s11676-018-0731-5
  • Yang Y, Sun K, Han L, et al. Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biol Biochem. 2022;169:169. doi: 10.1016/j.soilbio.2022.108657
  • Singh BP, Cowie AL. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci Rep. 2014;4(1):3687. doi: 10.1038/srep03687
  • Zimmerman AR, Gao B, Ahn M-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem. 2011;43(6):1169–1179. doi: 10.1016/j.soilbio.2011.02.005
  • Cui Y-F, Meng J, Wang Q-X, et al. Effects of straw and biochar addition on soil nitrogen, carbon, and super rice yield in cold waterlogged paddy soils of North China. J Integr Agric. 2017;16(5):1064–1074. doi: 10.1016/S2095-3119(16)61578-2
  • Li L, Zhao C, Chen Q, et al. Study on microbial community structure and soil nitrogen accumulation in greenhouse vegetable fields with different planting years. Agronomy. 2022;12(8):1911. doi: 10.3390/agronomy12081911
  • Wang T, Cao X, Chen M, et al. Effects of soil acidification on bacterial and fungal communities in the Jiaodong Peninsula, Northern China. Agronomy. 2022;12(4):927. doi: 10.3390/agronomy12040927
  • Yao Q, Liu J, Yu Z, et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biol Biochem. 2017;110:56–67. doi: 10.1016/j.soilbio.2017.03.005
  • Chen K, Li N, Zhang S, et al. Biochar-induced changes in the soil diazotroph community abundance and structure in a peanut field trial. Biochar. 2022;4(1). doi: 10.1007/s42773-022-00133-6
  • He Z, Cao H, Liang J, et al. Effects of biochar particle size on sorption and desorption behavior of NH4±N. Ind Crops Prod. 2022;189:189. doi: 10.1016/j.indcrop.2022.115837
  • Li Y, Feng H, Dong Q, et al. Ammoniated straw incorporation increases wheat yield, yield stability, soil organic carbon and soil total nitrogen content. Field Crops Res. 2022;284:284. doi: 10.1016/j.fcr.2022.108558
  • Ning X, Wang S, Zhao B, et al. Arsenic and nitrate remediation by isolated FeOB strains coupled with additional ferrous iron in the iron-deficient arid soils. Sci Total Environ. 2022;825:154057. doi: 10.1016/j.scitotenv.2022.154057
  • An M, Han Y, Zhao C, et al. Effects of different wind directions on soil erosion and nitrogen loss processes under simulated wind-driven rain. Catena. 2022;217:106423. doi: 10.1016/j.catena.2022.106423
  • Wang L, Xin J, Nai H, et al. Effects of different fertilizer applications on nitrogen leaching losses and the response in soil microbial community structure. Environ Technol Innov. 2021;23:23. doi: 10.1016/j.eti.2021.101608
  • Sundberg C, Al-Soud WA, Larsson M, et al. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol. 2013;85(3):612–626. doi: 10.1111/1574-6941.12148
  • Bokulich NA, Subramanian S, Faith JJ, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10(1):57–59. doi: 10.1038/nmeth.2276
  • Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869
  • Zheng H, Liu D, Liao X, et al. Field-aged biochar enhances soil organic carbon by increasing recalcitrant organic carbon fractions and making microbial communities more conducive to carbon sequestration. Agric Ecosyst Environ. 2022;340:108177. doi: 10.1016/j.agee.2022.108177
  • Zhang H, Qian W, Wu L, et al. Spectral characteristics of dissolved organic carbon (DOC) derived from biomass pyrolysis: biochar-derived DOC versus smoke-derived DOC, and their differences from natural DOC. Chemosphere. 2022;302:134869. doi: 10.1016/j.chemosphere.2022.134869
  • Eykelbosh AJ, Johnson MS, Couto EG. Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil. J Environ Manage. 2015;149:9–16. doi: 10.1016/j.jenvman.2014.09.033
  • Li K, Niu X, Zhang D, et al. Renewable biochar derived from mixed sewage sludge and pine sawdust for carbon dioxide capture. Environ Pollut. 2022;306:119399. doi: 10.1016/j.envpol.2022.119399
  • Shao F, Xu J, Chen F, et al. Insights into olation reaction-driven coagulation and adsorption: a pathway for exploiting the surface properties of biochar. Sci Total Environ. 2022;854:158595. doi: 10.1016/j.scitotenv.2022.158595
  • Zhou M, Ying S, Chen J, et al. Effects of biochar-based fertilizer on nitrogen use efficiency and nitrogen losses via leaching and ammonia volatilization from an open vegetable field. Environ Sci Pollut Res Int. 2021;28(46):65188–65199. doi: 10.1007/s11356-021-15210-9
  • Zhao J, Tao Q, Li B, et al. Low-pyrolysis-temperature biochar promoted free-living N2-fixation in calcareous purple soil by affecting diazotrophic composition. Geoderma. 2021;388:388. doi: 10.1016/j.geoderma.2021.114969
  • Zheng J, Luan L, Luo Y, et al. Biochar and lime amendments promote soil nitrification and nitrogen use efficiency by differentially mediating ammonia-oxidizer community in an acidic soil. Appl Soil Ecol. 2022;180:180. doi: 10.1016/j.apsoil.2022.104619
  • Cao H, Ning L, Xun M, et al. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl Soil Ecol. 2019;135:25–32. doi: 10.1016/j.apsoil.2018.11.002
  • Zhang M, Liu Y, Wei Q, et al. Biochar enhances the retention capacity of nitrogen fertilizer and affects the diversity of nitrifying functional microbial communities in karst soil of southwest China. Ecotoxicol Environ Saf. 2021;226:112819. doi: 10.1016/j.ecoenv.2021.112819
  • Zhang S, Cui J, Wu H, et al. Organic carbon, total nitrogen, and microbial community distributions within aggregates of calcareous soil treated with biochar. Agric Ecosyst Environ. 2021;314:314. doi: 10.1016/j.agee.2021.107408
  • Li X, Wang T, Chang SX, et al. Biochar increases soil microbial biomass but has variable effects on microbial diversity: a meta-analysis. Sci Total Environ. 2020;749:141593. doi: 10.1016/j.scitotenv.2020.141593
  • Azeem M, Jeyasundar PGSA, Ali A, et al. Cow bone-derived biochar enhances microbial biomass and alters bacterial community composition and diversity in a smelter contaminated soil. Environmental Research. 2022;216:114278. doi: 10.1016/j.envres.2022.114278
  • Pei J, Li J, Mia S, et al. Biochar aging increased microbial carbon use efficiency but decreased biomass turnover time. Geoderma. 2021;382:114710. doi: 10.1016/j.geoderma.2020.114710
  • Yan Y, Yan M, Ravenni G, et al. Novel bioaugmentation strategy boosted with biochar to alleviate ammonia toxicity in continuous biomethanation. Bioresour Technol. 2022;343:126146. doi: 10.1016/j.biortech.2021.126146
  • Yang Y, Chen X, Liu L, et al. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: a global meta-analysis. Glob Chang Biol. 2022;28(21):6446–6461. doi: 10.1111/gcb.16361
  • Sun D, Meng J, Xu EG, et al. Microbial community structure and predicted bacterial metabolic functions in biochar pellets aged in soil after 34 months. Appl Soil Ecol. 2016;100:135–143. doi: 10.1016/j.apsoil.2015.12.012
  • Chen J, Liu X, Li L, et al. Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short term biochar treatment across three sites from South China. Appl Soil Ecol. 2015;91:68–79. doi: 10.1016/j.apsoil.2015.02.012
  • Liu M, Wang S, Yang M, et al. Combined treatment of heavy metals in water and soil by biochar and manganese-oxidizing bacteria. J Soils Sediments. 2022;23(1):145–155. doi: 10.1007/s11368-022-03298-6
  • Liu W, Wang S, Lin P, et al. Response of CaCl2-extractable heavy metals, polychlorinated biphenyls, and microbial communities to biochar amendment in naturally contaminated soils. J Soils Sediments. 2015;16(2):476–485. doi: 10.1007/s11368-015-1218-z
  • Lladó S, Žifčáková L, Větrovský T, et al. Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biol Fertil Soils. 2015;52(2):251–260. doi: 10.1007/s00374-015-1072-6
  • Loganathachetti DS, Venkatachalam S, Jabir T, et al. Total nitrogen influence bacterial community structure of active layer permafrost across summer and winter seasons in Ny-Alesund, Svalbard. World J Microbiol Biotechnol. 2022;38(2):28. doi: 10.1007/s11274-021-03210-3
  • Zhang H , Ullah F, Ahmad R, et al. Response of Soil Proteobacteria to Biochar Amendment in Sustainable Agriculture- A mini review. J. soil plant. Environ. 2022;1(2):16-30. doi: 10.56946/jspae.v1i2.56
  • Ormeno-Orrillo E, Servin-Garciduenas LE, Rogel MA, et al. Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol. 2015;38(4):287–291. doi: 10.1016/j.syapm.2014.12.002
  • Qi Y, Liu H, Zhang B, et al. Investigating the effect of microbial inoculants frankia F1 on growth-promotion, rhizosphere soil physicochemical properties, and bacterial community of ginseng. Appl Soil Ecol. 2022;172:172. doi: 10.1016/j.apsoil.2021.104369
  • Ibrahim MM, Guo L, Wu F, et al. Field-applied biochar-based MgO and sepiolite composites possess CO2 capture potential and alter organic C mineralization and C-cycling bacterial structure in fertilized soils. Sci Total Environ. 2022;813:152495. doi: 10.1016/j.scitotenv.2021.152495
  • Gautam A, Sekaran U, Guzman J, et al. Responses of soil microbial community structure and enzymatic activities to long-term application of mineral fertilizer and beef manure. Environ Sustain Indic. 2020;8:8. doi: 10.1016/j.indic.2020.100073